¿ES NECESARIO ENTRENAR CON ALTAS CARGAS PARA AUMENTAR LA FUERZA Y LA HIPERTROFIA MUSCULAR?

Las principales guías de entrenamiento recomiendan utilizar cargas superiores al 70% de 1RM con el fin de obtener los mayores beneficios sobre la fuerza y la hipertrofia muscular. Curiosamente el conocido como “RM continuum” establece que las mejoras en fuerza se alcanzarían con cargas entre 1-5 RM, mientras que para la hipertrofia se obtendrían con cargas entre 6-12 RM. Estas hipótesis se basan en la creencia de que con mayores cargas de entrenamiento se reclutarán unidades motoras de umbrales más altos, requeridas para que se produzcan las adaptaciones musculares. Sin embargo, el último estudio de Brad Schoenfeld and cols (1) ha puesto patas arriba estas teorías.

Así, en dicho estudio se analizó el efecto de diferentes intensidades de entrenamiento de fuerza sobre el 1RM para los ejercicios de flexión de codo y press de piernas, y sobre el área de sección transversal del músculo (CSA). Durante 12 semanas, 30 sujetos entrenaron al 20% de 1RM (G20) un brazo y una pierna, mientras que la extremidad contralateral fue randomizada a una de las tres siguientes condiciones: 40% (G40); 60% (G60), y 80% de 1RM (G80). En todos los casos, se llevó a cabo el mismo volumen de entrenamiento (ver tabla 1).

Tabla 1. Variables de entrenamiento utilizadas en los ejercicios de flexión del codo y press de piernas

El CSA de los flexores del codo y del vasto lateral mejoró en los 4 grupos. Sorprendentemente, en las 3 condiciones de estudio -G40, G60 y G80- aumentó de forma similar: 25,3%, 25,1% y 25%, respectivamente, para los flexores del codo, y 20,5%, 20,4% y 19,5%, para el vasto lateral. Mientras, en el G20 incrementó solo 11,4% para los flexores del codo y 8,9% para el vasto lateral. Para la fuerza, el 1RM de ambos grupos musculares aumentó igualmente en las 4 condiciones, produciéndose el principal incremento en G60 y G80.

Por tanto, observamos cómo, aunque todas las intensidades fueron útiles, por encima del 60% se consiguieron los mayores beneficios. Por ello, no resulta imprescindible entrenar siempre con cargas máximas para optimizar las ganancias en fuerza e hipertrofia muscular, sino que podemos jugar con diferentes intensidades en función del estado del sujeto y del momento de la temporada en el que nos encontremos.


REFERENCIAS

1. Lasevicius, T., Ugrinowitsch, C., Schoenfeld, B. J., Roschel, H., Tavares, L. D., De Souza, E. O., … & Tricoli, V. (2018). Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. European Journal of Sport Science, 1-9.

LESIONES EN LOS ISQUIOSURALES, ¿CÓMO PREVENIRLAS?

La lesión en los isquiosurales (también conocidos como isquiotibiales) es una de las más comunes entre los deportes que incluyen carrera o desaceleraciones bruscas de la pierna como en los golpeos en fútbol, donde supone un 16 % de las lesiones. Uno de los grandes problemas de este tipo de lesión, además de su elevada incidencia, es su elevado ratio de recurrencia, ya que aproximadamente un 22-25% de los deportistas que la sufren recaen de nuevo en esta misma lesión.

Se ha observado que una buena forma física y altos niveles de fuerza pueden ser buenos aliados a la hora de prevenir lesiones. En el caso de las lesiones de isquiosurales, un estudio publicado en el prestigioso American Journal of Sports Medicine1 analizó la fuerza excéntrica de este grupo muscular (mediante el ejercicio Nordic hamstring) a 178 jugadores de Rugby Union, y posteriormente les hicieron un seguimiento de la prevalencia de lesiones durante una temporada. Los investigadores observaron que un mayor desequilibrio (>15-20%) entre piernas se asociaba a un riesgo 2-3 veces mayor de sufrir una lesión en los isquiosurales, sobre todo si el deportista había sufrido previamente esa misma lesión.

Figura 1. El ángulo de “break point” en el ejercicio Nordic hamstring ha mostrado ser un predictor del riesgo de lesión de los isquiosurales. Aplicaciones para móviles como “Nordics” permiten su evaluación de forma sencilla.

Por lo tanto, la medición de la fuerza excéntrica de los isquiosurales es muy útil para evaluar el riesgo de lesión de los deportistas. Sin embargo, la tecnología usada para esta medición en los estudios científicos no está normalmente al alcance del entrenador de a pie, y por ello el Dr. Carlos Balsalobre ha investigado en nuevas aplicaciones móviles para acercar estas tecnologías al trabajo del día a día. Tal es el caso de la aplicación “Nordics”, que nos permite evaluar la fuerza excéntrica de isquiosurales mediante la grabación del ejercicio Nordics hamstring. Para ello, debemos realizar un video de la ejecución del ejercicio Nordics hamstring y determinar el ángulo en el que el deportista no consigue aguantar su peso (break point angle). Esta medición ha mostrado estar altamente relacionada con otras tecnologías como la medición isocinética del pico de fuerzas2, y puede ser por lo tanto una alternativa práctica para evaluar a nuestros deportistas.


REFERENCIAS

  1. Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric knee flexor strength and risk of hamstring injuries in rugby union. Am J Sports Med 2015;43(11):2663–70.
  2. Sconce E, Jones P, Turner E, Comfort P, Graham-Smith P. The Validity of the Nordic Hamstring Lower for a Field-Based Assessment of Eccentric Hamstring Strength. J Sport Rehabil 2015;24(1):13–20.

SEIS SESIONES DE SPRINT INTERVAL TRAINING MEJORAN EL RENDIMIENTO DE CORREDORES BIEN ENTRENADOS

El entrenamiento interválico de sprint (SIT, por sus siglas en inglés, “Sprint Interval Training”) es una modalidad de entrenamiento muy interesante, ya que requiere de un menor volumen para obtener, en muchos casos, mejores resultados que el entrenamiento de resistencia aeróbica convencional. Una de las principales limitaciones que han tenido los estudios que han investigado los efectos del SIT ha sido que la mayoría se han realizado en condiciones de laboratorio.

Con el objetivo de estudiar los efectos del SIT sobre el rendimiento, un estudio [1] evaluó los cambios inducidos por un periodo de entrenamiento de dos semanas de SIT en el que 12 corredores de trail bien entrenados llevaron a cabo 4-7 series de 30’’ a máxima intensidad descansando 4 minutos entre series. Los parámetros de rendimiento estudiados fueron la máxima velocidad aeróbica, la potencia máxima, la potencia media, el tiempo hasta el agotamiento y el tiempo en una prueba de 3000 metros.

Los resultados mostraron cómo el SIT mejoraba valores que tienen una especial trascendencia en el rendimiento en los deportes de resistencia.  La máxima velocidad aeróbica mejoró un 2.3%, la potencia máxima y media un 2,4 y 2,8% respectivamente y el tiempo de los 3000 metros disminuyó un 6%. Además, el tiempo hasta el agotamiento a un 90% de la máxima velocidad aeróbica fue un 42% mayor.

Estos resultados no hacen más que confirmar las virtudes de los entrenamientos de alta intensidad bien estructurados, ya que pequeños cambios en la metodología de trabajo de los atletas pueden provocar mejoras significativas que marquen la diferencia en el periodo competitivo.


REFERENCIAS

[1]      J. Koral, D. J. Oranchuk, R. Herrera, and G. Y. Millet, “Six Sessions of Sprint Interval Training improves running performance in trained athletes,” J. Strength Cond. Res., p. 1, Oct. 2017.

AGUANTAR LA RESPIRACIÓN ¿UN SUSTITUTO BARATO A LA HIPOXIA?

El entrenamiento en altura es ampliamente utilizado por los deportistas de élite para mejorar su rendimiento. Sin embargo, esta estrategia no está al alcance de la mayoría ya sea por aspectos organizativos o económicos, y por ello el entrenamiento con otros métodos de hipoxia normobárica como las tiendas de altitud ha ganado una gran popularidad.

Como demuestra un meta-análisis publicado en Sports Medicine (Brocherie, 2017), existe una amplia evidencia demostrando la efectividad de realizar entrenamientos de alta intensidad usando hipoxia normobárica en comparación con la realización de los mismos entrenamientos en normoxia (sin hipoxia). De hecho, los autores concluyen que la hipoxia normobárica mejora la capacidad para realizar esfuerzos repetidos, algo de gran importancia en deportes de equipo o en otros individuales como los de raqueta o combate.

En los últimos años se ha propuesto que el entrenamiento con hipoventilación voluntaria -es decir, intentando respirar lo mínimo posible- podría ser un método alternativo y práctico para la hipoxia normobárica. Confirmando el potencial hipoxémico de este método, se ha observado que nadar aguantando la respiración tras una larga espiración reduce de forma muy significativa (78-91%) los niveles de saturación de oxígeno en comparación con el mismo ejercicio realizado con respiración normal (98%), además de aumentar los niveles de lactato (Toubekis, 2017). Además, al igual que con otros estímulos hipóxicos, la realización de ejercicio con hipoventilación aumenta la activación muscular para un mismo ejercicio (Kume, 2016).

Recientemente un estudio coordinado por Gregoire Millet y Xavier Woorons apoya además la utilidad de la hipoventilación para obtener mejoras a largo plazo (Fornasier-Santos, 2018). Estos autores evaluaron a jugadores de Rugby que realizaban una sesión de sprints repetidos de 40 metros con hipoventilación o con respiración normal. Tras 4 semanas de entrenamiento, observaron que aquellos que habían tratado de mantener la respiración durante los sprints mejoraron el número de esfuerzos que podían repetir hasta la fatiga (de 9 a 15), mientras que el grupo control no mejoró su rendimiento.

En resumen, el entrenamiento con hipoventilación  (apnea voluntaria) se está mostrando como un método eficaz para obtener un estímulo hipóxico (menor saturación, pH y mayor activación muscular) así como para mejorar la capacidad de realizar esfuerzos repetidos de alta intensidad. Futuros estudios deberán comprobar si puede ser un sustituto práctico para la hipoxia normobárica, lo que potenciaría su uso entre los equipos con menos posibilidades.


REFERENCIAS

Brocherie, F. et al (2017) Effects of Repeated-Sprint Training in Hypoxia on Sea-Level Performance: A Meta-Analysis. Sports Medicine. 47: 1651-1660.

Fournasier-Santos, C. et al (2018) Repeated-sprint training in hypoxia induced by voluntary hypoventilation improves running repeated-sprint ability in rugby players. European Journal of Sport Science. In press.

Kume, D. et al (2016) Does voluntary hypoventilation during exercise impact EMG activity? SpringerPlus. 5: 149

Toubekis, AG. Et al (2017) Severe hypoxemia induced by prolonged expiration and reduced frequency breathing during submaximal swimming. Journal of Sports Sciences. 35(11):1025-1033.

CÓMO COMBATIR LA DEFICIENCIA DE HIERRO EN MUJERES DEPORTISTAS

La nutrición es un factor diferencial asociado al rendimiento. El éxito o el fracaso en una competición puede deberse a una inadecuada ingesta nutricional. En el caso de las mujeres, el déficit de hierro se ha convertido en uno de los principales caballos de batalla dentro de la nutrición deportiva, ya que es muy común el déficit de este micronutriente -esencial para las rutas de producción de energía-, debido principalmente a un insuficiente consumo en la dieta o a la menstruación (1).

Las fundaciones británica y americana de la nutrición para mujeres aconsejan un consumo diario de hierro de 14,8 y 18 mg/día, respectivamente, mientras que para las embarazadas y las lactantes recomiendan una ingesta adicional. Sin embargo, no existe un consenso generalizado sobre el consumo óptimo para mujeres deportistas. Algunos autores sugieren que las corredoras de larga distancia deberían aumentar en 70% el consumo de hierro, es decir, 10 mg más al día de los 14,8 mg recomendados por la Fundación Británica de la Nutrición (2). Este incremento vendría explicado por estudios previos que encontraron que mujeres deportistas, a pesar de ingerir igual o mayores cantidades de hierro que mujeres inactivas, tuvieron menores niveles de hierro que éstas (3, 4), remarcando un posible efecto negativo del ejercicio sobre el estado del hierro en mujeres.

Aunque los tratamientos convencionales utilizados para combatir esta deficiencia -suplementos orales e inyecciones intramusculares o intravenosas- mejoran el estado del hierro en atletas, su uso se asocia con diversos efectos adversos, pudiendo llegar a presentar riesgo de sobrecarga de hierro (5). Es por ello que la modificación de la dieta se considera la principal línea de prevención del déficit de hierro en mujeres deportistas (6). El hierro de los alimentos se encuentra en dos formas: hierro hemo –procedente de fuentes animales- y no hemo – procedente de otros alimentos como los vegetales-. El primero está presente en las moléculas de hemoglobina y mioglobina. Sin embargo, a pesar de presentar una eficiente absorción, solo constituye alrededor del 10% de todo el hierro ingerido en la dieta. La absorción del hierro no hemo depende de varios factores, haciendo que su disponibilidad varíe entre el 2% y el 20% (6).

Por tanto, para el mantenimiento o mejora del estado del hierro en mujeres deportistas se deben incorporar estrategias centradas en la modificación de la dieta con un enfoque particular en aumentar el hierro total en la dieta, pero especialmente la ingesta de hierro hemo, así como en mejorar la biodisponibilidad de hierro mediante la alteración de la composición de las comidas. Por ejemplo, los alimentos ricos en hierro se pueden consumir con frutas y verduras, que facilitarán su absorción debido a la presencia de vitamina C. Por el contrario, deben reducirse o al menos evitarse en la misma comida los inhibidores de la absorción del hierro, como el calcio en la leche o los taninos en el té y el café.


REFERENCIAS

  1. McClung, J. P., Gaffney-Stomberg, E., & Lee, J. J. (2014). Female athletes: a population at risk of vitamin and mineral deficiencies affecting health and performance. Journal of Trace Elements in Medicine and Biology, 28(4), 388-392.
  2. Whiting, S. J., & Barabash, W. A. (2006). Dietary reference intakes for the micronutrients: considerations for physical activity. Applied Physiology, Nutrition, and Metabolism, 31(1), 80-85.
  3. Spodaryk, K., Czekaj, J., & Sowa, W. (1996). Relationship among reduced level of stored iron and dietary iron in trained women. Physiological Research, 45(5), 393-397.
  4. Woolf, K., St. Thomas, M. M., Hahn, N., Vaughan, L. A., Carlson, A. G., & Hinton, P. (2009). Iron status in highly active and sedentary young women. International Journal of Sport Nutrition and Exercise Metabolism, 19(5), 519-535.
  5. Mettler, S., & Zimmermann, M. B. (2010). Iron excess in recreational marathon runners. European Journal of Clinical Nutrition, 64(5), 490.
  6. Alaunyte, I., Stojceska, V., & Plunkett, A. (2015). Iron and the female athlete: a review of dietary treatment methods for improving iron status and exercise performance. Journal of the International Society of Sports Nutrition, 12(1), 38.

¿CUÁNTO HAY QUE BEBER HACIENDO EJERCICIO?

Existe un interés generalizado sobre cuál es la mejor estrategia de hidratación durante el ejercicio. En concreto, podrían diferenciarse dos tendencias enfrentadas sobre este tema: aquellos que opinan que la hidratación debe ser planificada de antemano y aquellos que piensan que el deportista debe beber atendiendo únicamente a su sensación de sed.1

Bajo la hipótesis de que la sensación de sed es un mecanismo imperfecto para controlar el balance hídrico (es decir, que cuando tenemos sed es ya demasiado tarde), las clásicas recomendaciones del American College of Sport Medicine propusieron que durante el ejercicio se debía beber todo lo posible sin provocar molestias gastrointestinales.2 Más recientemente estas recomendaciones fueron ligeramente modificadas, proponiendo que se debía beber la cantidad necesaria para evitar una pérdida de peso mayor del 2%,3 lo cual se consideraría una deshidratación excesiva. En resumen, estos investigadores proponen como estrategia óptima planificar la hidratación bebiendo incluso en ausencia de sed para evitar pérdidas excesivas de peso corporal.

Sin embargo, otra tendencia sugiere que estas recomendaciones están más basadas en intereses comerciales -muchos de estos grupos de investigación están financiados por empresas como Gatorade- que en resultados científicos. De hecho, existe poca evidencia que implique a la pérdida de agua durante el ejercicio per se (sin ausencia de sed) como responsable de las consecuencias normalmente asociadas como calambres musculares, dificultad cognitiva o eventos como el golpe de calor.4 Como ejemplo, meta-análisis publicados en la prestigiosa revista British Journal of Sport Medicine han mostrado como beber atendiendo a la sensación de sed proporcionaba mayores beneficios en el rendimiento que protocolos de hidratación controlados (por encima o por debajo de la sensación de sed),5 mostrando además que en ausencia de sed pérdidas de hasta el 4% del peso corporal no se relacionan con una disminución del rendimiento.6

De hecho, al igual que es peligroso beber menos de lo que el organismo nos pide, beber por encima de la sensación de sed también puede conllevar serios riesgos para la salud, pudiendo desembocar en hiponatremia asociada al ejercicio. Pese a que esta condición es menos conocida, tiene una preocupante prevalencia en deportistas de resistencia, y aunque normalmente presenta síntomas moderados (eg., naúseas, vómitos) se han dado algunos casos de muerte.7

En conclusión, existe mucha controversia en torno a cuál es la mejor estrategia de hidratación durante el ejercicio. Sin embargo, y en contra de las recomendaciones de algunas empresas y ciertos estamentos de prestigio, la evidencia científica parece indicar que lo mejor es atender a la propia sensación de sed del deportista, teniendo especial precaución para no beber ni más ni menos.


REFERENCIAS

  1. Kenefick RW. Drinking Strategies: Planned Drinking Versus Drinking to Thirst. Sport Med. 2018. doi:10.1007/s40279-017-0844-6.
  2. Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 1996;28(1):517-521. doi:10.1097/00005768-199610000-00045.
  3. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377-390. doi:10.1249/mss.0b013e31802ca597.
  4. Cotter JD, Thornton SN, Lee JKW, Laursen PB. Are we being drowned in hydration advice? Thirsty for more? Extrem Physiol Med. 2014;3(1):1-16. doi:10.1186/2046-7648-3-18.
  5. Goulet EDB. Effect of exercise-induced dehydration on time-trial exercise performance: A meta-analysis. Br J Sports Med. 2011;45(14):1149-1156. doi:10.1136/bjsm.2010.077966.
  6. Goulet EDB. Effect of exercise-induced dehydration on endurance performance: Evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med. 2013;47(11):679-686. doi:10.1136/bjsports-2012-090958.
  7. Hew-Butler T, Loi V, Pani A, Rosner MH. Exercise-Associated Hyponatremia: 2017 Update. Front Med. 2017;4(March):1-10. doi:10.3389/fmed.2017.00021.

CROSSFIT, ¿ES REALMENTE UN DEPORTE TAN LESIVO?

Es tal el auge y la popularidad que ha alcanzado el crossfit en los últimos años que se estima que existen más de 10000 centros especializados en todo el mundo. Entre las razones que explican la fiebre por el crossfit destaca que se trata de una disciplina con una gran variedad de ejercicios, siendo cada sesión diferente a la anterior, lo que implica que cada entrenamiento suponga un reto. Cada WOD (Work of the Day) incluye trabajo de fuerza y cardiovascular de alta intensidad, suponiendo una alta demanda a nivel físico y mental, ya que en ocasiones se lleva al organismo hasta la extenuación.

Esta característica hace que el crossfit pueda suponer un mayor riesgo de lesión que otras modalidades deportivas. Hasta la fecha, diversos estudios han analizado su tasa de incidencia lesional. Uno de ellos (1), llevado a cabo entre 386 practicantes de crossfit, halló que un 19,4% de estos había sufrido una lesión en los 6 meses previos al estudio, siendo los hombres más propensos que las mujeres. Sin embargo, y aunque parezca sorprendente, la incidencia de lesiones no es mayor que la encontrada en corredores de larga distancia (2). Además, la tasa lesional parece situarse en torno a las 3,1 por cada 1000 horas de entrenamiento de crossfit (3), similar a la encontrada en modalidades deportivas como la gimnasia, los levantamientos olímpicos o el rugby. En este sentido, en el fútbol americano, en el hockey sobre hielo o en el fútbol se han registrado mayores tasas. Asimismo, la lesión de hombro –entre 25-31% (2,3)-parece ser la más frecuente entre los crossfiteros. El hecho de que ciertos ejercicios lleven a los hombros más allá de su rango de movimiento fisiológico (por ejemplo, kipping pull-up) podría explicar el alto porcentaje de lesión en el hombro. Otro factor que contribuiría a la lesión de hombro en particular y a lesionarse en general, sería la fatiga muscular que se produce como consecuencia del alto número de repeticiones realizadas en cada WOD. Por ello, es fundamental priorizar la técnica sobre los resultados con el fin de prevenir lesiones.

Por tanto, que el riesgo de lesión no sea mayor que el de otros deportes junto con los múltiples beneficios que aporta -aumento del VO2máx, de la fuerza y la resistencia muscular, y mejora de la composición corporal-, convierten al crossfit en un método de entrenamiento ideal para la mejora de la condición física (4) y, con ello, de la salud. En definitiva, quizá el peligro no resida en el crossfit en sí, sino en el uso que de él se hace, no dedicando el tiempo necesario para el aprendizaje de los ejercicios y no respetando los principios de individualización, de progresión y de relación óptima entre carga y recuperación.


REFERENCIAS

  1. Weisenthal, B. M., Beck, C. A., Maloney, M. D., DeHaven, K. E., & Giordano, B. D. (2014). Injury rate and patterns among CrossFit athletes. Orthopaedic Journal of Sports Medicine, 2(4), 2325967114531177.
  2. van Gent, B. R., Siem, D. D., van Middelkoop, M., van Os, T. A., Bierma-Zeinstra, S. S., & Koes, B. B. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British journal of sports medicine.
  3. Hak, P. T., Hodzovic, E., & Hickey, B. (2013). The nature and prevalence of injury during CrossFit training. Journal of strength and conditioning research.
  4. 4. Meyer, J., Morrison, J., & Zuniga, J. (2017). The Benefits and Risks of CrossFit: A Systematic Review. Workplace Health & Safety, 65(12):619.

DIETAS BAJAS EN CARBOHIDRATOS PARA EL RENDIMIENTO ¿QUÉ DICE LA EVIDENCIA?

Las dietas bajas en carbohidratos se presentan actualmente como una tendencia con un gran seguimiento entre los deportistas de resistencia. El rendimiento en estos deportes está altamente condicionado por la disponibilidad de glucógeno, el almacén de los carbohidratos en hígado y músculo. Las dietas bajas en carbohidratos parecen mejorar el metabolismo de las grasas, lo cual supondría un ahorro de glucógeno y por lo tanto la capacidad para evitar esa fatiga tan temida por los deportistas comúnmente denominada “pájara” o “muro”. Ante tal hipótesis, muchos deportistas se aventuran a reducir su ingesta de carbohidratos siguiendo dietas como la cetogénica (< 50 g al día de carbohidratos).

Un estudio muy reciente publicado en la prestigiosa revista Metabolism1 analizó el efecto de una dieta de 12 semanas alta en hidratos de carbono (65% de carbohidratos) o cetogénica (6% de carbohidratos) en deportistas de resistencia. Los investigadores encontraron una pérdida de peso y masa grasa considerablemente mayor con la dieta cetogénica que con la alta en carbohidratos. Además, aunque no se observaron diferencias en el rendimiento en una prueba de 100 km en bici, la dieta cetogénica aumentó la capacidad para consumir grasas durante este esfuerzo, y aportó ligeros beneficios en la potencia relativa durante un sprint.

Sin embargo, la evidencia respecto a los beneficios de las dietas bajas en carbohidratos para el rendimiento no es unánime. Así, el grupo de la doctora Loiuse Burke, una de las mayores especialistas en nutrición deportiva, encontró2 que las dietas bajas en carbohidratos durante 12 semanas de entrenamiento intenso aumentaban la oxidación de grasas durante el ejercicio, pero también observaron una peor eficiencia energética (mayor consumo de oxígeno para los mismos ritmos) y un peor rendimiento en una prueba de 10 km en comparación con aquellos que consumían una dieta alta en hidratos de carbono o quienes periodizaban su ingesta (alternando momentos de alto y bajo consumo de hidratos de carbono).

Por lo tanto, aunque las dietas bajas en carbohidratos pueden aportar interesantes beneficios a nivel fisiológico como una mayor capacidad de oxidación de grasas -algo primordial especialmente en deportes de muy larga duración-, también parecen comprometer la capacidad para realizar esfuerzos de alta intensidad y, por lo tanto, el rendimiento. Estrategias como la periodización de la ingesta de carbohidratos podrían suponer un equilibrio positivo. De hecho, realizar las sesiones de entrenamiento intenso con una alta disponibilidad de carbohidratos y las sesiones de volumen y menor intensidad restringiendo la ingesta de este macronutriente ha mostrado propiciar grandes beneficios en el rendimiento y la masa grasa, más aún que dietas altas o bajas en hidratos de carbono. 3,4


Referencias

  1. McSwiney, F. T. et al. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 81, 25–34 (2017).
  2. Burke, L. M. et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 595, 2785–2807 (2017).
  3. Marquet, L. A. et al. Enhanced endurance performance by periodization of carbohydrate intake: ‘Sleep Low’ strategy. Medicine and Science in Sports and Exercise 48, (2016).
  4. Marquet, L. A. et al. Periodization of Carbohydrate Intake: Short-Term Effect on Performance. Nutrients 8, 1–13 (2016).

FRÍO COMO MÉTODO DE RECUPERACIÓN, ¿CUÁNDO ES BENEFICIOSO Y CUANDO NO?

La recuperación es un proceso fundamental para la mejora del rendimiento. Una correcta recuperación entre sesiones permitirá aumentar la carga en entrenamientos posteriores, facilitando así mayores adaptaciones. Además, menores tiempos de recuperación permitirán aumentar la frecuencia de entrenamiento, algo importante especialmente en deportistas de alto nivel que realizan varias sesiones en un mismo día. Es por ello que los investigadores han centrado sus esfuerzos en comprobar la eficacia de distintos métodos de recuperación como la electroestimulación, las medias de compresión, el masaje o la recuperación activa.

La inmersión en frío es un método de recuperación muy utilizado por los deportistas tras un partido o un entrenamiento intenso. Este método se utiliza bajo la hipótesis de que la aplicación de frío disminuye la percepción de dolor mediante una reducción de la velocidad de conducción nerviosa, reduciendo además el flujo sanguíneo y limitando así la producción de inflamación y edema.

De hecho, un meta-análisis1 que incluyó 14 estudios (239 sujetos) mostró que la aplicación de frio post-ejercicio tenía un efecto significativo en la reducción de dolor muscular y de los niveles de creatin kinasa en sangre (marcador de daño muscular). Además, se observó una tendencia a una mejor recuperación de la función muscular, aunque no con tanta evidencia como en las otras variables. Por lo tanto, parece que la aplicación de frío post-ejercicio puede ser una estrategia eficaz para aliviar la fatiga y el dolor muscular a corto plazo.

Sin embargo, estudios recientes han mostrado algunos efectos colaterales a largo plazo en respuesta a este método de recuperación. Un estudio2 publicado en la prestigiosa revista Journal of Physiology analizó a deportistas que entrenaron fuerza durante 12 semanas, realizando recuperación activa (10 minutos de pedaleo suave) o inmersión en agua fría (10 minutos a 10 grados) tras cada sesión. Los resultados mostraron una menor ganancia de masa muscular (3 veces menos) cuando los sujetos recuperaban con la aplicación de frío. Además, el grupo que recuperó de forma activa ganó casi el doble de fuerza que el grupo que recuperó con inmersión en agua fría. Además, con el fin de analizar la base molecular para este hallazgo, evaluaron la respuesta anabólica y miogénica aguda a una sola sesión de entrenamiento de fuerza al recuperar de forma activa o con agua fría, encontrando que ambas estaban disminuidas en el caso de la aplicación de frío.

En conclusión, la inmersión en agua fría puede ser recomendable para acelerar la recuperación entre sesiones cuando el objetivo es evitar el dolor muscular y la disminución del rendimiento sin importar las adaptaciones producidas por esa sesión, como por ejemplo para recuperar entre partidos de un torneo o tras cada día de una carrera por etapas. Sin embargo, esta estrategia parece bloquear las señales de adaptación muscular al ejercicio, reduciendo así las ganancias de fuerza y masa muscular a largo plazo. Por lo tanto, no sería recomendable su inclusión de forma general en la planificación. Una vez más vemos la importancia del estrés generado por el ejercicio (inflamación, producción de radicales libres, etc.) para que se produzcan las adaptaciones al ejercicio, reduciendo las estrategias que buscan reducir este estrés (ej. frío, anti-inflamatorios, suplementos vitamínicos…) las ganancias producidas.


REFERENCIAS

  1. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233-240. doi:10.1136/bjsports-2011-090061.
  2. Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285-4301. doi:10.1113/JP270570.

MEJORA TUS MARCAS Y PREVIENE LESIONES: ENTRENA LA FUERZA

Poco a poco el entrenamiento de fuerza se va consolidando dentro de las programaciones de entrenamiento de los deportistas de resistencia. Corredores, ciclistas y triatletas abandonan la idea de que lo único necesario para mejorar es “entrenar más y más rápido”, y adquieren conciencia de los beneficios que este tipo de entrenamiento les puede proporcionar a nivel de rendimiento y salud.

El entrenamiento de fuerza disminuye las posibilidades de lesión, uno de los grandes temores de los deportistas de resistencia. Como ejemplo, una revisión1 que incluía 26610 participantes mostró que el entrenamiento de fuerza disminuye hasta un 50% de las lesiones por sobreuso. Por el contrario, no observaron beneficios con los estiramientos o ejercicios de propiocepción.

Además, el entrenamiento de fuerza supone una mejora de rendimiento. En el caso del ciclismo, un estudio liderado por el Dr. Per Aagaard2 mostró en ciclistas jóvenes de alto nivel cómo tras 16 semanas de entrenamiento de fuerza (dos días a la semana) mejoraba no solo la fuerza sino también la economía de esfuerzo (gastar menos para una misma intensidad) y el rendimiento en un time-trial de 45 minutos (8% de mejora), variables que no mejoraron en aquellos ciclistas que no incluyeron entrenamiento de fuerza. De forma similar, otros autores han mostrado beneficios también en el segmento de carrera3. Así, corredores que realizaron 8 semanas de entrenamiento de fuerza (dos sesiones a la semana) mejoraron la fuerza, la potencia, la velocidad alcanzada durante una prueba en laboratorio y su marca en 10 km (2.5 %, lo que equivale a pasar de 37 minutos a 36 en 10 km), mientras que los que mantuvieron únicamente su entrenamiento de carrera no mejoraron o incluso empeoraron.

Existe controversia también respecto a cómo deben entrenar la fuerza los deportistas de resistencia, ya que a menudo imitan en sus entrenamientos a otras personas cuyo objetivo es aumentar la masa muscular. En estos deportistas una ganancia de peso corporal puede conllevar consecuencias negativas para el rendimiento. Por ello, el objetivo no será hipertrofiar sino aumentar la fuerza por la vía neural, es decir, mejorar la coordinación neuromuscular tratando de que esto suponga la mínima ganancia posible de masa muscular. Como muestran los estudios del Dr. González-Badillo, realizar los ejercicios a la máxima velocidad posible y tratando de perder la mínima velocidad durante cada serie aportará los mayores beneficios, supondrá una menor fatiga para posteriores sesiones y conllevará una menor ganancia de volumen muscular. Como ejemplo, estos autores observaron4 que perder un 40% de velocidad durante cada serie de fuerza suponía un mayor aumento del volumen del cuádriceps que cuando se perdía un 20%, aportando además menos beneficios en acciones dinámicas.

Por lo tanto, el entrenamiento de fuerza debe ser un pilar fundamental sobre el que se sustente el entrenamiento general de resistencia de cualquier deportista. La evidencia en cuanto a sus beneficios a nivel de salud y rendimiento es demoledora, por lo que por lo general no debemos temer eliminar alguna sesión específica de natación, carrera o bici para incluir una buena sesión de fuerza.


Referencias

  1. Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871-877. doi:10.1136/bjsports-2013-092538.
  2. Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sport. 2011;21:298-307. doi:10.1111/j.1600-0838.2010.01283.x.
  3. Damasceno M V, Lima‑Silva AE, Pasqua LA, et al. Effects of resistance training on neuromuscular characteristics and pacing during 10‑km running time trial. Eur J Appl Physiol. 2015;115(7):1513-1522.
  4. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sport. 2016;(1998):1-12. doi:10.1111/sms.12678.