LA PÉRDIDA DE MASA MUSCULAR INCREMENTA EL RIESGO DE MUERTE EN PACIENTES CON CÁNCER

La caquexia es un síndrome multifactorial que padecen los pacientes con cáncer caracterizado por pérdida involuntaria de peso corporal (>5%), sarcopenia e infiltración de grasa intramuscular. En este estudio en el que se analizaron estas 3 variables a 1473 pacientes mediante tomografia computarizada, aquellos que tenían caquexia tuvieron peor pronóstico de supervivencia (8,4 meses), independientemente de su IMC, frente a aquellos que no presentaban ninguna de estas 3 variables (28,4 meses). Estos resultados muestran la importancia de la evaluación de la composición corporal en los pacientes con cáncer, así como la necesidad de implementar protocolos para evitar la pérdida de masa y fuerza muscular. El entrenamiento de fuerza ayuda a preservar la masa muscular, la fuerza y mejorar la calidad de vida de estos pacientes, por lo que puede ser un tratamiento coadyuvante eficaz para atenuar los efectos asociados a la enfermedad.

DEPRESIÓN Y DETERIORO COGNITIVO EN SUPERVIVIENTES DE CÁNCER DE MAMA

El cáncer de mama es el tipo de cáncer más diagnosticado entre las mujeres (1). Las mejoras en los programas de detección y en los tratamientos han aumentado la tasa de supervivencia en aproximadamente un 85% (2). Sin embargo, los tratamientos contra el cáncer están todavía asociados a la aparición de efectos secundarios incluso años después de que el tratamiento haya finalizado, siendo frecuentes la depresión y el deterioro cognitivo. Así, un 29% de pacientes con cáncer de mama muestran deterioro cognitivo post-tratamiento (3), mientras que la incidencia de depresión en las supervivientes de cáncer de mama ha aumentado hasta el 50% (4). Este dato es bastante preocupante, ya que la depresión en supervivientes de cáncer de mama se asocia con una reducción en la tasa de supervivencia (5).
Coloquialmente, términos como “chemobrain” se han empezado a utilizar para describir los efectos posteriores del tratamiento en relación con el deterioro cognitivo. Determinados agentes quimioterapeúticos, entre los que se encuentran los inhibidores de la aromatasa y el tamoxifeno, han sido asociados con una reducción en la función cognitiva tanto durante como una vez finalizado el tratamiento (6). Por otro lado, la evidencia es bastante concluyente respecto al papel protector de la actividad física (AF) frente a la depresión y el deterioro cognitivo en población libre de enfermedad. Sin embargo, dicha relación es inconsistente en supervivientes de cáncer de mama. Recientemente, un nuevo estudio (7) ha examinado el rol de la depresión sobre la función cognitiva en esta población, y ha analizado el papel que ejerce la actividad física sobre estos efectos adversos del tratamiento del cáncer. Para ello, 317 mujeres supervivientes de cáncer de mama (59 años de media y 6 desde la finalización del tratamiento) con estadios entre 0 y IIIc fueron reclutadas. Se les analizó la función cognitiva, el nivel de depresión y de AF a través de cuestionarios.
Los resultados obtenidos demuestran que la depresión se asoció con deterioro cognitivo, independientemente del tratamiento recibido. Además, de todos los agentes quimioterapeúticos analizados – tamoxifeno, anastrozol, letrozol y exemestano – los dos primeros ejercieron los mayores efectos negativos sobre la función cognitiva. Asimismo, se demostró que el efecto de la quimioterapia sobre la depresión varía con volúmenes más elevados de AF moderada y vigorosa. De igual manera, las supervivientes que realizaron mayores niveles de AF moderada o vigorosa tuvieron una mejor capacidad cognitiva. Sin embargo, los resultados del estudio sugieren que los efectos de la quimioterapia sobre el cerebro podrían no ser mitigados por niveles moderados de AF, ya que, si bien la AF moderada fue efectiva para mejorar la función cognitiva en aquellas que no recibieron quimioterapia, esto no fue así para las que sí recibieron.
En conclusión, los efectos del tratamiento sobre la capacidad cognitiva en supervivientes de cáncer de mama vienen determinados parcialmente por los cambios en los niveles de depresión. No obstante, estos cambios dependen del nivel de AF realizado, siendo mayor su efecto protector cuanto mayor sea la intensidad.


REFERENCIAS

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424.
  2. Allemani, C., Weir, H.K., Carreira, H., Harewood, R., Spika, D., Wang, X.S., et al. (2015). Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 385(9972), 977-1010.
  3. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 3348-3356.
  4. Zimmer, P., Baumann, F. T., Oberste, M., Wright, P., Garthe, A., Schenk, A., … & Wolf, F. (2016). Effects of exercise interventions and physical activity behavior on cancer related cognitive impairments: a systematic review. Biomed Res Int, 2016:1820954.
  5. Watson, M., Haviland, J. S., Greer, S., Davidson, J., & Bliss, J. M. (1999). Influence of psychological response on survival in breast cancer: a population-based cohort study. Lancet, 354(9187), 1331-1336.
  6. Janelsins, M. C., Heckler, C. E., Peppone, L. J., Kamen, C., Mustian, K. M., Mohile, S. G., … & Conlin, A. K. (2017). Cognitive complaints in survivors of breast cancer after chemotherapy compared with age-matched controls: an analysis from a nationwide, multicenter, prospective longitudinal study. J Clin Oncol, 35(5), 506-514.
  7. Bedillion, M. F., Ansell, E. B., & Thomas, G. A. (2019). Cancer treatment effects on cognition and depression: The moderating role of physical activity. Breast, 44, 73-80.

POR UNA CERVEZA… ¿NO PASA NADA?

Uno de los incentivos para practicar deporte, sobre todo entre los deportistas amateur, es el poder socializar con amigos o compañeros de equipo. Y para qué nos vamos a engañar, ese momento viene acompañado en muchas ocasiones de una (o más de una) cerveza, la piedra angular del denominado “tercer tiempo”. ¿Pero cuáles son las consecuencias de esa cerveza a nivel fisiológico en cuanto a nuestras adaptaciones al ejercicio?

Para contestar a esta pregunta, el grupo de investigación de la Universidad de Granada liderado por Manuel J. Castillo [1] ha publicado recientemente un estudio en el que evaluaron el efecto de consumir cerveza de forma diaria en los beneficios obtenidos con un programa de 10 semanas de entrenamiento interválico de alta intensidad (HIIT, por sus siglas en inglés). En concreto, los participantes tomaron de lunes a viernes 2 cervezas de 330 mL al día si eran hombres, y 1 cerveza de 330 mL al día si eran mujeres (o la misma cantidad de alcohol en forma de vodka, según preferencia del participante). Durante el mismo periodo, otro grupo realizó el mismo entrenamiento, pero consumiendo una bebida sin alcohol, y otro grupo no realizó ningún tipo de entrenamiento.

Una vez finalizado el programa de entrenamiento no se observaron cambios en el peso corporal de ningún grupo. Sin embargo, los autores observaron que todos los grupos de entrenamiento habían disminuido su masa grasa y aumentado su masa muscular de forma significativa, y la magnitud de la mejora no se vio afectada por el consumo moderado de alcohol en ninguna de sus variables (etanol o cerveza). Por lo tanto, estos resultados muestran que en personas sanas con un nivel de forma física intermedio, el tomar una dosis moderada de alcohol (1-2 cervezas) de forma diaria podría no interferir con los beneficios del entrenamiento a nivel de composición corporal. [Nota: estudio financiado por el Centro de Información Cerveza y Salud].

Es importante remarcar, no obstante, que estos resultados no deben ser interpretados como un apoyo al consumo de alcohol. De hecho, otros estudios han observado que el consumo de grandes dosis de alcohol (1.5 g/kg de alcohol, lo que equivale a 10-11 cervezas en un solo día) reduce el ratio de síntesis proteica post-ejercicio, lo que inhibiría las adaptaciones anabólicas (es decir, de crecimiento muscular) al entrenamiento [2]. Además, el consumo elevado de alcohol se asocia a un mayor riesgo de mortalidad, y de hecho un estudio publicado en la prestigiosa revista Lancet [3] mostró recientemente cómo la única cantidad de alcohol que minimizaba los efectos adversos en la salud era CERO bebidas alcohólicas a la semana.

En resumen, el tomar una cerveza tras el entrenamiento podría no afectar a las adaptaciones al entrenamiento, y por el contrario puede favorecer la adherencia al ejercicio en determinadas personas. No obstante, desde Fissac abogamos por tratar de restringir el consumo de alcohol al máximo por sus posibles problemas para la salud.


REFERENCIA

[1]       Molina-Hidalgo C, De-Lao A, Jurado-Fasoli L, Amaro-Gahete FJ, Castillo MJ. Beer or ethanol effects on the body composition response to high-intensity interval training. The BEER-HIIT study. Nutrients 2019;11. doi:10.3390/nu11040909.

[2]       Parr EB, Camera DM, Areta JL, Burke LM, Phillips SM, Hawley JA, et al. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PLoS One 2014;9:1–9. doi:10.1371/journal.pone.0088384.

[3]       Griswold MG, Fullman N, Hawley C, Arian N, Zimsen SRM, Tymeson HD, et al. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018;392:1015–35. doi:10.1016/S0140-6736(18)31310-2.

OBESIDAD, RESISTENCIA A LA INSULINA Y LIPOTOXICIDAD

Cuando el balance energético es positivo (la ingesta de energía es mayor que el gasto energético), el tejido adiposo excede su capacidad de almacenar lípidos y se produce un desbordamiento lipídico que provoca que se almacenen en tejidos no adiposos. Debido a la falta de actividad física, el músculo no es capaz de utilizar la glucosa pese a que se secreta insulina por parte del páncreas, y órganos como el hígado y el corazón comienzan a almacenar ácidos grasos libres. Esta acumulación de lípidos tóxicos, induce una inflamación crónica de bajo grado y resistencia a la insulina que puede desencadenar en una disfunción celular.