Entradas

HACER MÁS DE 10 FLEXIONES SEGUIDAS DISMINUYE EL RIESGO CARDIOVASCULAR

En un estudio longitudinal de 10 años, los participantes que pudieron completar más de 10 flexiones presentaron una reducción significativa de riesgo cardiovascular en comparación con aquellos que completaron menos. Los que pudieron hacer más de 40, tuvieron una reducción del 96%. Además, se vio que la disminución de riesgo cardiovascular fue más lineal en las flexiones que con el parámetro de VO2 max. Estos resultados sugieren que es razonable evaluar el estado funcional en clínica mediante pruebas básicas o cuestionarios.

REFERENCIA

  • Yang J, Christophi CA, Farioli A, et al. Association Between Push-up Exercise Capacity and Future Cardiovascular Events Among Active Adult Men. JAMA Netw Open. 2019;2(2):e188341.

 

DEMANDAS CARDIOVASCULARES SEGÚN LA ESPECIALIDAD DEPORTIVA

fissac _ demandas cardiovasculares

¿QUÉ RELACIÓN TIENEN EL VO2MAX Y LA LONGITUD DE LOS TELÓMEROS?

Cada vez es mayor la evidencia que muestra una asociación entre el acortamiento de la longitud telomérica y un mayor riesgo de enfermedades relacionadas con la edad como las cardiovasculares, la diabetes tipo II y la aterosclerosis, y una mayor mortalidad; mientras que el ejercicio regular y una elevada capacidad cardiorrespiratoria –evaluada como VO2max- se asocian con mejor salud y mayor supervivencia.

Sin embargo, hasta ahora, la relación entre el ejercicio y el VO2max con la longitud de los telómeros era inconsistente, ya que en algunos estudios se sugería un efecto protector de los primeros sobre los segundos, y en otros, por el contrario, no se hallaba tal efecto.

Por ello, un reciente estudio piloto (1) trató de evaluar si la longitud del telómero está asociada con el ejercicio físico cardiovascular, además de analizar la relación entre el VO2max y la longitud telomérica. Participaron 10 jóvenes (22-27 años) y 10 mayores (66-77 años), de los que 5 de cada grupo eran atletas de resistencia y 5 eran deportistas recreacionales. A todos ellos se les extrajeron biopsias musculares, para la medición de la longitud relativa del telómero calculada como el número de copia repetida del telómero/número de copia del único gen (ratio T/S), y se les sometió a una prueba de esfuerzo incremental.

En los jóvenes, el VO2max fue de 67,0±5,3 ml/kg/min para los atletas de resistencia, y de 53,9±5,5 ml/kg/min para los recreacionales, mientras que en los mayores, el VO2max para los atletas de resistencia y los deportistas recreacionales fue de 45,4±6,7 y 39,4±5,6 ml/kg/min, respectivamente. Además se encontró que el grupo de mayores entrenados tenía un ratio T/S mayor –indicador de mayor longitud telomérica- que los menos entrenados, no encontrándose diferencias entre los jóvenes. Por último, se halló una asociación positiva entre el ratio T/S y el VO2max (Fig. 1), existiendo una fuerte correlación para los atletas de resistencia, pero relativamente débil para los deportistas recreacionales.

FISSAC_telómeros envejecimiento

Figura 1. Relación entre la longitud telomérica –evaluada como ratio T/S- y el VO2max en jóvenes y mayores.

Por tanto, observamos cómo la longitud de los telómeros se encuentra mejor preservada en los mayores entrenados en resistencia en comparación con los entrenados recreacionalmente, mostrando que en los mayores el entrenamiento regular se relaciona con la longitud telomérica. Este dato junto con la asociación positiva que se produce entre el VO2max y la longitud del telómero, revelarían una significancia clínica respecto a un mejor estado de salud y una mayor longevidad.

En definitiva, el ejercicio físico regular parece producir un retraso del proceso de envejecimiento biológico preservando la longitud de los telómeros y promoviendo el conocido como efecto “anti-aging”, siendo el VO2max un marcador representativo de la calidad del envejecimiento.


REFERENCIA

  1. Østhus, I. B. Ø., Sgura, A., Berardinelli, F., Alsnes, I. V., Brønstad, E., Rehn, T., … & Nauman, J. (2012). Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PloS One, 7(12), e52769.

SIT: UNA HERRAMIENTA EFICAZ FRENTE A LA FALTA DE TIEMPO PARA ENTRENAR

El entrenamiento interválico de sprint (SIT, por sus siglas en inglés, “Sprint Interval Training”) es una modalidad de entrenamiento que recientemente ha cobrado especial interés, ya que requiere un menor volumen para obtener, en muchos casos, mejores resultados que el entrenamiento de resistencia aeróbica convencional (1), por lo que resultaría ideal para aquella gente que no puede dedicar grandes espacios de tiempo a su entrenamiento diario, además de promover nuevas adaptaciones sobre el VO2máx que con los métodos tradicionales no se obtendrían.

La metodología del SIT consiste en breves periodos de carrera a máxima intensidad (≤30 seg) con intervalos de recuperación entre series relativamente largos y normalmente pasivos (~4 min). Algunos autores sugieren que el SIT es un tipo de Entrenamiento Interválico de Alta Intensidad (HIIT). Sin embargo, mientras que en el SIT la resíntesis del ATP depende del metabolismo anaeróbico predominantemente, en el caso del HIT y del entrenamiento de resistencia tradicional depende casi exclusivamente del metabolismo aeróbico. No obstante, el SIT también parece inducir muchas de las adaptaciones aeróbicas y metabólicas que el ejercicio de resistencia tradicional y el HIIT provocan (incremento de la capacidad enzimática oxidativa, de la biogénesis mitocondrial y de los trasportadores de glucosa GLUT-4).

En una revisión sistemática con meta-análisis (2) se analizaron los resultados existentes respecto a las adaptaciones metabólicas al SIT y el posible efecto de éste sobre el VO2max. Los criterios que tuvo que haber cumplido la metodología de los diferentes estudios analizados fueron:

– Duración de las series: 10-30 seg.

– Intensidad: máxima, “all-out”.

– Volumen: ≤ 12 repeticiones por sesión.

– Recuperación: ≥ 5 veces el tiempo de trabajo.

El estudio incluyó un total de 442 participantes con 190 de ellos pertenecientes al grupo de intervención con SIT. Los sujetos incluidos fueron principalmente jóvenes adultos, sanos y sedentarios o recreacionalmente activos (VO2max < 55 ml/kg/min).

El principal resultado fue la mejora del VO2max en un rango de 4–13.5%. De los 12 estudios que analizaron el efecto del SIT sobre el VO2max, solamente 2 no encontraron efectos. Sin embargo, en ambos únicamente se realizaron 6 sesiones con SIT (2 semanas). A nivel cardiovascular, se obtuvo que el SIT podría provocar modificaciones en la cinética de la frecuencia cardíaca durante una prueba de esfuerzo submáxima, disminuyéndola, aunque no sobre la de reposo.

Además se han estudiado los cambios producidos sobre las enzimas oxidativas tras la relización de SIT, hallándose incrementos de la actividad de la citrato sintasa hasta de un 42%, mientras que sobre la enzima acil-CoA-deshidrogenasa se obtuvieron resultados contrapuestos, ya que en algunos casos se observó aumento de su actividad, mientras que en otros no se apreciaron cambios significativos. Respecto a otras enzimas estudiadas, se han hallado aumentos en la actividad de la piruvato deshidrogenasa, de la malato deshidrogenasa y de la succinato deshidrogenasa. Por último, los resultados de este estudio sugieren que el SIT podría mejorar el control glicémico y la sensibilidad a la insulina.

Por tanto, dada su eficiencia en cuanto a las mejoras obtenidas fundamentalmente sobre el VO2max en relación al tiempo invertido, el SIT se torna como una herramienta muy eficaz a considerar por parte de los entrenadores personales, siempre de forma complementaria a otros métodos de entrenamiento.


REFERENCIAS

  1. Denham, J., Feros, S. A., & O’Brien, B. J. (2015). Four weeks of sprint interval training improves 5-km run performance. The Journal of Strength & Conditioning Research, 29(8), 2137-2141.
  2. Sloth, M., Sloth, D., Overgaard, K., & Dalgas, U. (2013). Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 23(6), e341-e352.

MÁSCARAS DE ALTITUD, ¿FUNCIONAN REALMENTE?

Uno de los principales efectos por los que los deportistas realizan estancias en altitud es la estimulación de eritropoyetina (EPO) para la producción de nuevos glóbulos rojos, buscando así una mejora en el transporte de oxígeno y con ello un aumento del rendimiento. En los últimos años han surgido nuevas herramientas que tratan de simular el estímulo hipóxico característico de la altitud, siendo algunas de las más conocidas la hipoxia intermitente o el entrenamiento con una “máscara de altitud”.

Estas máscaras buscan producir hipoxia a través de una resistencia ajustable en las válvulas, lo cual limita el paso de aire al deportista. Con el fin de evaluar su eficacia, en un estudio reciente (Porcari, 2016) los participantes fueron divididos en dos grupos durante 6 semanas, uno que entrenaba sin máscara y otro con ella. El entrenamiento fue realizado dos días por semana, y consistía en 10 repeticiones de 30 segundos a la máxima potencia aeróbica separadas por 90 segundos de recuperación activa. El grupo que entrenó con máscara fue regulando la resistencia de la misma, pasando de una altitud simulada de 914 a 3659 m a lo largo de las 6 semanas.

Durante las sesiones de entrenamiento el grupo que entrenó con máscara refirió que el entrenamiento era significativamente más duro que el grupo que entrenó sin ella, aunque por lo general ambos grupos entrenaron a potencias similares. Los niveles de saturación arterial de oxígeno fueron significativamente menores (solo 2% menos) en el grupo que entrenó con máscara, sin diferencias en los niveles de lactato.

Tras las 6 semanas de entrenamiento no se observaron cambios significativos entre el grupo control y el grupo que entrenó con máscara en variables hematológicas como el hematocrito o la hemoglobina, así como tampoco en variables espirométricas (FVC, FVC1 o el ratio entre ambas). Además, ambos grupos mejoraron su potencia aeróbica máxima y su consumo máximo de oxígeno de igual forma. Sin embargo, solo el grupo que entrenó con máscara mejoró su umbral ventilatorio, el umbral de compensación respiratoria y la potencia asociada a estos umbrales.

Otro estudio reciente (Sellers, 2016) evaluó también durante 6 semanas el efecto de llevar una máscara de altitud en circuitos de fuerza y carrera de alta intensidad realizados 4 días a la semana. Tras el programa de entrenamiento, no se encontraron diferencias en la capacidad anaeróbica (test de wingate) ni en la aeróbica (VO2 max).

Estos resultados muestran que las llamadas “máscaras de altitud” no producen cambios similares a los producidos por la altitud, al no disminuir la saturación de oxígeno durante el entrenamiento ni producir cambios a nivel hematológico tras su uso a largo plazo. No obstante, estos resultados pueden deberse en parte al tipo de entrenamiento utilizado, ya que quizá si en vez de entrenamiento interválico de alta intensidad hubieran realizado entrenamiento continuo de moderada intensidad pero de mayor duración, los resultados podrían ser diferentes.

Es importante remarcar que, pese a que los efectos no sean los anunciados por los fabricantes, las adaptaciones producidas en los umbrales ventilatorios en uno de los estudios no son nada despreciables. Aunque no hubo diferencias entre grupos en la función espiratoria o inspiratoria, los autores sugieren que las mejoras de estas variables podrían haber sido las responsables de las mejoras en estos umbrales. La función de la musculatura respiratoria ha mostrado ser un factor determinante del rendimiento deportivo, y diversos estudios han mostrado importantes mejoras en el rendimiento tras el entrenamiento de la misma (Ej. Powerbreath).

En conclusión, las máscaras de altitud no proporcionan efectos similares a los del entrenamiento en altitud ya que no producen cambios a nivel hematológico. Además, sus beneficios a nivel de rendimiento no son claros, pese a que en uno de los estudios publicados sí se encontró una mayor mejora del rendimiento en los umbrales, lo cual podría deberse al mayor trabajo que requieren de la musculatura respiratoria.


REFERENCIAS

Porcari, J. P. et al (2016) Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Func-tion, and Hematological Variables. Journal of Sports Science and Medicine, 15: 379-389.

Sellers, J. H. et al (2016) Efficacy of a ventilatory training mask to improve anaerobic and aerobic capacity in reserve officers’ training corps cadets. Journal of strength and conditioning research, 30: 1155-1160.

¿ES LA SUPLEMENTACIÓN CON CREATINA ÚTIL EN DEPORTES DE RESISTENCIA?

La creatina es uno de los suplementos más populares entre aquellos deportistas que buscan mejorar su fuerza o explosividad, así como en aquellos que buscan hipertrofiar con fines estéticos al aumentar la retención de líquido intracelular. Su eficacia en este tipo de ejercicios de corta intensidad se debe a que mejora la disponibilidad de energía (ATP) de forma rápida, ya que la fosfocreatina (PCr) se disocia cediendo un fosfágeno (P) que puede unirse a una molécula de ADP, formando así ATP. Sin embargo, pese a que su uso está muy extendido en deportes de corta duración, pocos son los deportistas de resistencia que valoran su ingesta para mejorar el rendimiento en esfuerzos de larga duración.

El rendimiento en esfuerzos de larga duración está altamente condicionado por la disponibilidad de glucógeno, ya que cuando este sustrato se agota aparece la fatiga (el denominado muro o pájara), especialmente cuando el metabolismo de las grasas es poco eficiente. En un muy reciente estudio [1] se evaluó el posible efecto de la suplementación con creatina en la reposición de los depósitos de glucógeno tras el esfuerzo. En él, tras realizar una sesión de ejercicio en la que disminuían los depósitos de glucógeno (pedalear hasta el agotamiento al 70% VO2max), los sujetos se suplementaban durante 6 días con creatina (20 gr/día) o placebo junto con una dieta alta en carbohidratos (>80%). Los resultados mostraron que la suplementación con creatina, además de aumentar los depósitos de PCr y creatina libre, aumentó los depósitos de glucógeno en comparación con el grupo placebo desde el primer día de suplementación, manteniéndose en los 5 días posteriores. Por lo tanto, la suplementación con creatina -junto con la ingesta adecuada de carbohidratos- parece una estrategia eficaz para mejorar los procesos de recuperación entre entrenamientos o de cara a una competición.

Fissac _ creatina rendimiento resistencia

Fig. 1. La suplementación con creatina podría ser de gran utilidad para la recuperación de los depósitos de glucógeno entre sesiones, especialmente en aquellos deportes en los que se compite por etapas como el ciclismo.

Otros estudios han querido evaluar si esa mejora en el contenido de glucógeno tras la suplementación con proteína y carbohidratos se transforma realmente en un mejor rendimiento en deportes de resistencia. Así, un estudio [2] realizado en remeros de élite constató que, tras 7 días de entrenamiento junto con suplementación con creatina o placebo, el grupo que había consumido creatina aumentaba su umbral láctico en un test incremental (de 314,3 ± 5,0 a 335,6 ± 7,1 W) además del rendimiento en un test de alta intensidad.

Por otro lado, otro estudió en corredores [3] mostró que los niveles de lactato como respuesta a una carrera de 60 minutos al 60-75% VO2max eran menores tras suplementación con creatina, lo que sugiere que se disminuyó la degradación de glucógeno durante el ejercicio. No obstante, estos autores no aportan datos sobre los efectos en el rendimiento en este esfuerzo. Por último, un estudio en ciclistas [4] evaluó el efecto de la suplementación con creatina en el rendimiento en sprint tras dos horas de pedaleo al 60% VO2max encontrando un aumento del 33% en el rendimiento tanto en el grupo placebo como en el tratado, pese a que solo en el grupo tratado se obtuvieron mejoras a nivel de eficiencia metabólica (menor consumo de oxígeno para cargas submáximas).

En resumen, parece que la suplementación con creatina debe ser una herramienta a tener en cuenta tanto en deportes de alta intensidad y corta duración, donde ya es muy popular, como en deportes de larga duración, donde puede ayudar en los procesos de recuperación para posteriores entrenamientos así como mejorar el rendimiento. No obstante, hay que tener en cuenta posibles efectos negativos como un aumento de peso por la mayor acumulación de líquido intracelular, algo que podría llegar a afectar el rendimiento en aquellas disciplinas en las que el peso juegue un papel fundamental.


RERERENCIAS

  1. Roberts PA, Fox J, Peirce N, Jones SW, Casey A, Greenhaff PL. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids [Internet]. 2016;48(8):1831–42. Available from: http://link.springer.com/10.1007/s00726-016-2252-x
  2. Chwalbiñska-Moneta J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int J Sport Nutr Exerc Metab. 2003;13(2):173–83.
  3. Tang FC, Chan CC, Kuo PL. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. Eur J Nutr. 2014;53(1):61–71.
  4. Hickner RC, Dyck DJ, Sklar J, Hatley H, Byrd P. Effect of 28 days of creatine ingestion on muscle metabolism and performance of a simulated cycling road race. J Int Soc Sports Nutr. 2010;7:26.

MARATÓN EN MENOS DE 2 HORAS. OBJETIVO 1:59:59. ¿CUÁNDO Y QUIÉN?

El actual récord del mundo de maratón es de 2:02:57, marca que hizo el keniata Dennis Kimetto en Berlín. Este récord es 17 minutos menor que el registrado en la década de los 50. Exceptuando los tiempos de los 70, los récords han bajado entre 1-5 minutos por década desde 1960 cuando los africanos entraron en la competición internacional. Las mejoras vistas desde 1980 se han visto favorecidas por el incremento de los premios económicos y por la posibilidad de ganarse la vida con el running.La figura 1 muestra las marcas históricas de la maratón y la proyección que se hace en base a los tiempos registrados desde 1960, la cual predice que se bajará de las dos horas en 12-13 años, asumiendo una reducción de 20 segundos por año. Si se tienen en cuenta los tiempos registrados desde 1980 se marca la brecha de las 2 horas en 25 años, a razón de 10 segundos por año.

fissac _ tiempos maratón

Figura 1. Progresión de los tiempos de maratón desde 1920 [1].

Los determinantes fisiológicos que determinan el rendimiento son el VO2max, el umbral del lactato y la economía de carrera. Los maratonianos de la élite tienen valores cercanos a 70-85 ml/kg/min de consumo de oxígeno. Estos atletas pueden mantener velocidades cercanas al 85-90% del VO2max durante una hora. Sin embargo, encontrar valores extraordinarios de consumo de oxígeno y de economía de carrera en la misma persona es muy extraño. Los atletas del este de África no tienen particularmente valores excepcionales de VO2max o de umbral de lactato, pero sí presentan una excelente economía de carrera. El clásico estudio de Pollock [2] muestra como los corredores de élite de maratón tienen menores valores de VO2max y mejores datos de economía de carrera que los atletas de distancias más cortas. Sobre estos datos, aquel que rompa la barrera de las 2 horas tendrá una excepcional economía de carrera, la cual proporciona dos importantes ventajas fisiológicas. Primero, el gasto energético será menor y la depleción de glucógeno se retrasará. En segundo lugar, la producción de calor será también menor, reduciendo el estrés térmico.

¿Y cómo será el que baje de las 2 horas en la maratón?

41 de los 50 hombres que han corrido más rápido una maratón son keniatas o etíopes. De los 30 corredores que han corrido los 10.000 en menos de 27 minutos tenían una estatura media de 170 cm y un peso de 56 kg, lo que muestra que una favorable relación peso- área de superficie corporal puede tener un efecto en la disminución del estrés metabólico durante ejercicio intenso prolongado.

Además, la mayoría de estos atletas han estado expuestos a altitud y han hecho mucha actividad física desde temprana edad, lo que puede provocar adaptaciones pulmonares que reducen la incidencia de la desaturación arterial de oxígeno en ejercicio de muy alta intensidad.

Estas cuestiones son de difícil estudio, ya que son pequeñas diferencias las que determinan el éxito o el fracaso. El ser humano es una máquina casi perfecta cuyo límite es difícil de predecir. Las 2 horas es un reto extraordinario que seguro en un futuro es derribado, dejando de nuevo constancia de que hay pocas cosas imposibles si se trabaja con un objetivo desde la humildad, la abnegación y la perseverancia. Y la genética.

PERFIL FISIOLÓGICO DE MIGUEL INDURAIN: 1994 VS 2010

Un fenómeno de la naturaleza. Miguel Indurain, en el verano de 1994 batió el récord de la hora en el velódromo de Burdeos.

Por aquel entonces, el ciclista navarro tenía 30 años, medía 1,88 cm, pesaba 81 kg y acababa de ganar su 4º tour de Francia de forma consecutiva. En los meses previos, Sabino Padilla e Íñigo Múkija le hicieron un estudio fisiológico y aerodinámico para conseguir batir el récord. Los resultados fueron los de un extraterrestre (Padilla, Mujika, Angulo and Goiriena, 2000):

  • 572 W de potencia máxima (7,06 W/kg).
  • 505 W en el segundo umbral (OBLA).
  • Una velocidad de 52,88 km/h en el OBLA.
  • 183 latidos por minuto en el OBLA.
  • VO2 max de 6,4 litros/min (79 ml/kg/min). *

Indurain estableció el récord en 53,040 km, con una potencia media (estimada) de 509.5 W.

TABLA 1. Características de los ciclistas que consiguieron el récord de la hora (Padilla et al., 2000).

16 años después, el mismo Dr. Mújika sometió a Indurain de nuevo a un test de esfuerzo máximo con el objetivo de conocer cómo había disminuido el estado de forma de pentacampeón del Tour de Francia tras su retirada. Con 46 años y 92,2 kg de peso, el ciclista consiguió los siguientes valores en una prueba máxima incremental (Mujika, 2012):

  • 5,29 L/min (57,4 ml/kg/min) de consumo máximo de oxígeno.
  • Potencia máxima de 450 W (4,88 W/kg).
  • Frecuencia cardiaca máxima de 191 latidos por minuto.
  • Concentración de lactato de 11,2 mM.

Mujika & Indurain

Imagen 1. Íñigo Mújika y Miguel Indurain durante la prueba máxima de esfuerzo de 2000.

En su umbral individual de lactato (ILT), tuvo un consumo de 4,28 L/min (46,3 ml/kg/min), 329 W (3,57 W/kg), 159 latidos por minuto y 2,4 mM.

En su OBLA, los valores fueron de 4.68 L/min (50.8 ml/kg/min), 369 W (4.00 W/kg) y 170 latidos por minuto.

Si comparamos los datos de 1994 con los de 2000, el VO2 máximo y la potencia máxima aeróbica disminuyeron un 12,4% (15,2% por década), mientras que la potencia en el ILT y en OBLA descendió un 19,8% y 19,2%.

1994 vs 2000

Figura 1. Consumo máximo de oxígeno absoluto y relativo y potencia máxima absoluta y relativa de Miguel Indurain y su porcentaje de cambio con los datos de 1994 (Padilla et al., 2000).

A pesar de este descenso, los valores absolutos de Miguel Indurain tras 16 años alejado de la competición son comparables a los exhibidos por ciclistas del pelotón actual (Mujika, 2012). Los que hayan tenido la suerte de verle, han visto a un fenómeno de la naturaleza.

*El consumo máximo no se midió en estas pruebas para no perjudicar el estado de forma del ciclista. Sin embargo, en estudios previos Miguel Indurain tenía un VO2 max de 6,4 L/min.


REFERENCIAS

Mujika, I., 2012. The cycling physiology of Miguel Indurain 14 years after retirement. International journal of sports physiology and performance, [online] 7(4), pp.397–400. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/22868823> [Accessed 6 Mar. 2015].

Padilla, S., Mujika, I., Angulo, F. and Goiriena, J.J., 2000. Scientific approach to the 1-h cycling world record: a case study. Journal of applied physiology (Bethesda, Md. : 1985), [online] 89(4), pp.1522–7. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/11007591> [Accessed 6 Mar. 2015].