Entradas

EL EJERCICIO FÍSICO MODULA EL AMBIENTE TUMORAL

La progresión tumoral viene determinada en gran medida por el ambiente tumoral. El microentorno del tumor se caracteriza por tener una vascularización disfuncional que provoca que el flujo sanguíneo sea heterogéneo y haya zonas hipóxicas, es decir, con poco oxígeno. Además, la migración de células inmunitarias (NK, linfocitos T) disminuye, aumentando la presencia de macrófagos asociados al tumor. Este proceso acelerará el crecimiento tumoral.

La composición del microambiente del tumor es altamente plástica y se puede modificar a través del estilo del vida. Así, el sedentarismo se asocia con una concentración elevada en sangre de factores de crecimiento, hormonas y citocinas pro-inflamatorias (IL-6, TNFα, proteína C reactiva) perpetuando un ambiente inflamatorio de bajo grado que acelera los procesos tumorales. Por el contrario, el ejercicio estimula la regulación autocrina, paracrina y endocrina de diferentes órganos mediante la secreción de diferentes miocinas y hormonas que inducen un ambiente anti-inflamatorio sistémico y antitumoral. El ejercicio es capaz de modular el ambiente del tumor mejorando los procesos de angiogénesis no patológica, incrementando así la vascularización y perfusión tumoral, lo que reduce la hipoxia en el microentorno del tumor. Además, promueve la infiltración de células inmunes antitumorales (NK, linfocitos T y macrófagos M1) y reduce la inflamación de bajo grado. Esta reprogramación del ambiente tumoral por el ejercicio se relaciona con una reducción del riesgo de desarrollar varios tipos de cáncer, así como con la mejora del pronóstico durante el tratamiento de la enfermedad.

REFERENCIA

  • Koelwyn, G. J., Quail, D. F., Zhang, X., White, R. M., & Jones, L. W. (2017). Exercise-dependent regulation of the tumour microenvironment. Nature Reviews Cancer17(10), 620.

TURNOVER DEL LACTATO EN REPOSO Y EJERCICIO

La producción de lactato durante el ejercicio se ha estudiado durante más de dos siglos y todavía existe debate sobre su rol durante el reposo y el ejercicio. En un principio, el músculo se veía como su principal productor y su aumento durante el ejercicio se asociaba a la aparición de la fatiga. Más tarde se ha confirmado al lactato como sustrato energético fundamental que puede ser utilizado por diversos tejidos para su oxidación y obtención de energía, y para la re-síntesis de glucosa. La cantidad de lactato que se moviliza durante el ejercicio aumenta con respecto a cuando el organismo está en reposo (5000 µmol/min durante el ejercicio vs 1100 µmol/min en reposo). Además, su utilización por parte de los diferentes tejidos cambia según las demandas energéticas.

Por ejemplo, el músculo, en reposo, consume un 42% del lactato sistémico y produce un 53% para liberarlo en sangre (120 µmol/min), mientras que durante el ejercicio consume el 76% y libera el 89% (650 µmol/min). El cerebro es un caso particular, ya que en reposo libera más lactato del que consume (50 µmol/min), mientras que durante el ejercicio necesita más energía y consume más lactato para su oxidación (150 µmol/min) que el que libera.

El lactato en sangre no es captado por los tejidos únicamente para su oxidación y obtención de energía, ya que hay órganos como el riñón y el hígado que lo utilizan para resintetizar glucosa de nuevo (proceso denominado gluconeogénesis). Tanto el riñón como el hígado aumentan su actividad gluconeogénica durante el ejercicio, pasando de 160 a 200 µmol/min de lactato utilizado en el caso del riñón y de 200 a 350 µmol/min en el caso del hígado.

Por ello, se demuestra que el lactato es un producto metabólico muy importante que interviene en la homeostasis del organismo participando en la glucólisis, procesos de oxidación y de resíntesis de energía.

¿ES EL FTP UN SUSTITUTO VÁLIDO DEL UMBRAL DE LACTATO?

Un estudio realizado por miembros de Fissac relaciona el FTP con el umbral láctico, uno de los marcadores mas populares en los deportes de resistencia.

Los resultados muestran que el FTP puede ser una forma práctica de evaluar dicho umbral. No obstante, la precisión  depende del nivel de los deportistas, de manera que para estimar el umbral en los ciclistas de mayor nivel restaremos un 5% a la potencia media obtenida en un test de 20 minutos, mientras que para los menos entrenados no será necesario.

ELECTRO-ESTIMULACIÓN PARA MEJORAR EL RENDIMIENTO TRAS EL DESCANSO EN DEPORTES DE EQUIPO

En la mayoría de deportes de equipo se produce tras el descanso, por ejemplo al principio de la segunda parte en futbol, una disminución importante del rendimiento y un aumento significativo del riesgo de lesión. A menudo durante el descanso los deportistas se limitan a beber y a escuchar las instrucciones técnicas de su entrenador descansando de forma pasiva, lo que disminuye la actividad muscular y la temperatura corporal contribuyendo al descenso del rendimiento y al aumento del riesgo de lesión.

Con el fin de evitar dichos cambios, diversas estrategias han sido evaluadas, desde algunas tan simples como abrigarse con una manta térmica o andar, hasta otras como aplicar un estímulo vibratorio en la musculatura. Una de las estrategias que ha mostrado mayor potencial para evitar estos cambios negativos que se dan durante el descanso es la electro-estimulación de baja frecuencia, la cual se usa también para acelerar los procesos de recuperación de fatiga y daño muscular tras sesiones intensas.

fissac _ lesiones electroestimulación

Fig. 1. Tras el descanso en los deportes de equipo se produce una disminución del rendimiento y un aumento en el riesgo de lesión, lo cual se debe en parte a una disminución en la activación y temperatura muscular.

Un equipo de investigación del Instituto francés del deporte(1) quiso evaluar la eficacia de la electro-estimulación de baja frecuencia como método de recuperación a corto plazo (15 minutos) entre dos periodos de esfuerzo intenso, comparándolo con la recuperación activa (pedaleo suave al 40% VO2max) o la recuperación pasiva. Para evaluar los efectos en el rendimiento un grupo de jugadoras de balonmano (n=14) realizó dos tests Yo-Yo, uno antes y otro después de los 15 minutos de recuperación. Dicho test consiste en correr una distancia de 20m con 10s de descanso entre repetición y con velocidad progresiva (controlada por un pitido) hasta que no se puede mantener la velocidad. Además, se evaluaron otras variables como el esfuerzo percibido, los niveles de lactato, bicarbonato y pH en sangre y el índice de saturación de oxígeno muscular mediante NIRS.

Los autores encontraron que mientras que el rendimiento en el segundo test Yo-Yo disminuía en un 7.6% con la recuperación activa y en un 15.% con la recuperación pasiva, sólo lo hacía en un 1.8% con la recuperación mediante electro-estimulación de baja frecuencia. Además, la recuperación con electro-estimulación aceleró la vuelta a niveles basales de lactato, bicarbonato y pH, aunque las diferencias en la oxigenación muscular y en el esfuerzo percibido no llegaron a ser significativas.

Por lo tanto, vemos como la electro-estimulación de baja frecuencia debe ser tenida en cuenta en aquellos deportes en los que se busque mantener el rendimiento tras periodos cortos de descanso, como en el caso de los deportes de equipo. Esta herramienta nos permite acelerar los procesos de recuperación y de eliminación de metabolitos posiblemente a través del aumento del flujo sanguíneo que provoca la contracción muscular, aumentando así la temperatura muscular. Además, la electro-estimulación de baja frecuencia puede ser utilizada de forma pasiva por los deportistas, lo que les permite seguir atendiendo a las instrucciones del entrenador o hidratarse.


REFERENCIA

  1. Bieuzen F, Borne R, Toussaint J-F, Hausswirth C. Positive effect of specific low-frequency electrical stimulation during short-term recovery on subsequent high-intensity exercise. Appl Physiol Nutr Metab [Internet]. 2014;39(2):202–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24476476

LA UTILIDAD DE UNA PRUEBA DE ESFUERZO PARA PREDECIR EL RENDIMIENTO EN DEPORTES DE RESISTENCIA

El denominado umbral anaeróbico -aunque el término es fisiológicamente incorrecto pues la fosforilación oxidativa está siempre presente y las vías metabólicas predominantes cambian gradualmente, por lo que no es un umbral sino una transición continua- es junto a la potencia aeróbica máxima (VO2max) y la economía de carrera uno de los principales determinantes del rendimiento en deportes de resistencia. Pese a que hay numerosos métodos de establecer el umbral anaeróbico, como el análisis ventilatorio, electromiográfico, de balance de gases o de oxigenación muscular, el análisis del umbral láctico sigue siendo uno de los métodos más prácticos, barato y por ello más utilizado en el ámbito deportivo.

El umbral láctico puede definirse como la máxima carga de trabajo que precede un rápido aumento en los niveles de lactato sanguíneo como resultado de un desequilibrio en el ratio de producción/eliminación, lo cual ocurre de forma sincrónica a un aumento en los niveles de CO2 ventilado y de H+. Este umbral es determinado en una prueba de esfuerzo en la que la carga aumenta progresivamente, obteniendo una pequeña muestra de sangre capilar en cada aumento para medir los niveles de lactato. Diversos estudios han mostrado la validez del umbral láctico como predictor del rendimiento en deportes de resistencia (Para revisión, Faude, Kindermann, & Meyer, 2009). Sin embargo, existen diferentes formas de calcular este umbral, incluyendo la determinación subjetiva, umbrales fijos (4 mmol/l) o umbrales individualizados (mediante modelos matemáticos).

lactato

Fig. 1. El análisis de lactato en un test incremental nos sirve también para evaluar la mejora del deportista a lo largo de la temporada. En esta gráfica (datos obtenidos en deportista real) vemos como los niveles de lactato para una misma carga son menores según avanza la temporada, alcanzando además una mayor potencia final.

Un grupo de investigadores españoles (Santos-Concejero et al., 2014) quiso evaluar si el umbral láctico podría predecir el rendimiento en una carrera de 10km en deportistas muy entrenados y con un nivel homogéneo (completaban la distancia en 31,6 ± 1,2 minutos). Los deportistas realizaron una prueba de esfuerzo incremental (comenzando a 9 km/h e incrementando en 1,5 km/h cada 4 minutos) en la cual el umbral láctico fue calculado mediante dos modelos matemáticos diferentes, uno polinómico y otro exponencial. Pese a que el ritmo en 10km fue mayor que el correspondiente al umbral láctico, los autores encontraron que ambas variables estaban correlacionadas. Es decir, aquellos deportistas que presentaban un mayor umbral también presentaban una mayor velocidad de carrera en 10km. Además, y pese a que con todos los modelos la correlación fue significativa, los autores observaron que el nivel de correlación dependía del modelo matemático utilizado (mejor con el modelo exponencial).

Por lo tanto, este y otros estudios nos muestran cómo una prueba de esfuerzo puede aportarnos, además de datos a nivel del estado de salud cardiovascular del deportista si se incluye electrocardiograma, otros datos interesantes respecto al potencial de rendimiento del deportista.

Además, en una prueba de esfuerzo con test de lactato no sólo podemos determinar nuestro umbral láctico sino también el umbral aeróbico y la velocidad aeróbica máxima, lo cual es muy útil para encontrar puntos débiles a trabajar con el deportista así como para establecer las zonas de entrenamiento y poder planificar las sesiones de ejercicio trabajando a la intensidad necesaria.


REFERENCIAS

Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: how valid are they? Sports Medicine (Auckland, N.Z.), 39(6), 469–90. http://doi.org/10.2165/00007256-200939060-00003

Santos-Concejero, J., Tucker, R., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., & Gil, S. M. (2014). Influence of regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and running performance. Journal of Sports Sciences, 32(9), 853–9. http://doi.org/10.1080/02640414.2013.862844

MARATÓN EN MENOS DE 2 HORAS. OBJETIVO 1:59:59. ¿CUÁNDO Y QUIÉN?

El actual récord del mundo de maratón es de 2:02:57, marca que hizo el keniata Dennis Kimetto en Berlín. Este récord es 17 minutos menor que el registrado en la década de los 50. Exceptuando los tiempos de los 70, los récords han bajado entre 1-5 minutos por década desde 1960 cuando los africanos entraron en la competición internacional. Las mejoras vistas desde 1980 se han visto favorecidas por el incremento de los premios económicos y por la posibilidad de ganarse la vida con el running.La figura 1 muestra las marcas históricas de la maratón y la proyección que se hace en base a los tiempos registrados desde 1960, la cual predice que se bajará de las dos horas en 12-13 años, asumiendo una reducción de 20 segundos por año. Si se tienen en cuenta los tiempos registrados desde 1980 se marca la brecha de las 2 horas en 25 años, a razón de 10 segundos por año.

fissac _ tiempos maratón

Figura 1. Progresión de los tiempos de maratón desde 1920 [1].

Los determinantes fisiológicos que determinan el rendimiento son el VO2max, el umbral del lactato y la economía de carrera. Los maratonianos de la élite tienen valores cercanos a 70-85 ml/kg/min de consumo de oxígeno. Estos atletas pueden mantener velocidades cercanas al 85-90% del VO2max durante una hora. Sin embargo, encontrar valores extraordinarios de consumo de oxígeno y de economía de carrera en la misma persona es muy extraño. Los atletas del este de África no tienen particularmente valores excepcionales de VO2max o de umbral de lactato, pero sí presentan una excelente economía de carrera. El clásico estudio de Pollock [2] muestra como los corredores de élite de maratón tienen menores valores de VO2max y mejores datos de economía de carrera que los atletas de distancias más cortas. Sobre estos datos, aquel que rompa la barrera de las 2 horas tendrá una excepcional economía de carrera, la cual proporciona dos importantes ventajas fisiológicas. Primero, el gasto energético será menor y la depleción de glucógeno se retrasará. En segundo lugar, la producción de calor será también menor, reduciendo el estrés térmico.

¿Y cómo será el que baje de las 2 horas en la maratón?

41 de los 50 hombres que han corrido más rápido una maratón son keniatas o etíopes. De los 30 corredores que han corrido los 10.000 en menos de 27 minutos tenían una estatura media de 170 cm y un peso de 56 kg, lo que muestra que una favorable relación peso- área de superficie corporal puede tener un efecto en la disminución del estrés metabólico durante ejercicio intenso prolongado.

Además, la mayoría de estos atletas han estado expuestos a altitud y han hecho mucha actividad física desde temprana edad, lo que puede provocar adaptaciones pulmonares que reducen la incidencia de la desaturación arterial de oxígeno en ejercicio de muy alta intensidad.

Estas cuestiones son de difícil estudio, ya que son pequeñas diferencias las que determinan el éxito o el fracaso. El ser humano es una máquina casi perfecta cuyo límite es difícil de predecir. Las 2 horas es un reto extraordinario que seguro en un futuro es derribado, dejando de nuevo constancia de que hay pocas cosas imposibles si se trabaja con un objetivo desde la humildad, la abnegación y la perseverancia. Y la genética.

NUEVAS TENDENCIAS PARA CONTROLAR LA INTENSIDAD DEL ENTRENAMIENTO: NIRS

Uno de los factores claves para mejorar el rendimiento deportivo es conocer las zonas de entrenamiento, es decir, la intensidad de ejercicio que debo aplicar según el objetivo de la sesión.

El máximo estado estable de lactato (MLSS) es la intensidad a partir de la cual el lactato comienza a acumularse debido a que la producción de este metabolito supera la tasa de eliminación. Esta intensidad podría ser mantenida a lo largo del tiempo debido a la no acumulación de metabolitos -en teoría, ya que afectan otros factores como la depleción de sustratos, la fatiga central o el sistema músculo esquelético-. Es por ello que es un índice muy utilizado para valorar el estado de entrenamiento (1).

Los dos métodos más utilizados tradicionalmente para la determinación del MLSS son la medición de lactato sanguíneo, la cual requiere de pequeños pinchazos en la oreja o dedo del deportista; y el análisis de gases, un método eficaz pero enormemente caro y en la mayoría de las ocasiones sin posibilidad de realizar tests de campo. En los últimos tiempos un nuevo método de medida de la intensidad de ejercicio está siendo investigado con resultados muy satisfactorios: La medida de la saturación muscular de oxígeno mediante espectrometría de rayo infrarrojo cercano (NIRS, Near infra-red spectrometry).

En el músculo hay oxígeno que es transportado unido a la hemoglobina, presente en el torrente sanguíneo (capilares en este caso), y a la mioglobina, que se encuentra en el interior de las fibras musculares. Los niveles de oxígeno unidos a estos transportadores varían con el ejercicio, ya que una disminución de pH (lo cual ocurre al aumentar el metabolismo anaeróbico) o un aumento de temperatura hacen que el oxígeno “se desprenda” con mayor facilidad para ser utilizado en las vías energéticas. La disminución de afinidad de la hemoglobina por el oxígeno con el ejercicio intenso provoca que la gráfica de los valores de oxígeno sufra una caída al traspasar el umbral anaeróbico.

fissac _ NIRS

Figura 1: Los valores de VO2 y FC correspondientes al umbral anaeróbico son iguales con determinación mediante lactato sanguíneo y NIRS (2).

Numerosos estudios han encontrado una alta correlación entre los valores de intensidad equivalente al umbral anaeróbico midiendo la saturación de oxígeno muscular con NIRS y los niveles de lactato sanguíneo, teniendo valores prácticamente iguales de FC y %VO2máx (2,3). Por lo tanto, la utilización de la oxigenación muscular en estos estudios para determinar el umbral anaeróbico fue tan eficaz como la medida de lactato sanguíneo, siendo además mucho más fácil y rápida.

fissac _ NIRS _ MLSS

Figura 2: La velocidad correspondiente al máximo estado estable es la misma determinada mediante NIRS y lactato sanguíneo (3).


APLICACIÓN PRÁCTICA

Al realizar un test incremental con un medidor de la saturación de oxígeno muscular, obtenemos una gráfica similar a la Figura 3, en la que se distinguen cuatro zonas de entrenamiento. Utilizando estos datos podemos distribuir las cargas teniendo en cuenta el objetivo de la sesión, permitiéndonos mantener la intensidad a un nivel de recuperación, de mantenimiento/potenciación de base aeróbica, entre umbrales o de trabajo por encima del umbral anaeróbico. De igual forma, nos permite establecer de forma objetiva la duración de las recuperaciones fijándonos un nivel de saturación de oxígeno para comenzar la siguiente serie.

fissac _ MOXY

Figura 3: Gráfico de la saturación muscular de oxígeno durante un test incremental en carrera. La caída del minuto 15 marca el umbral aeróbico y la del 20 el umbral anaeróbico.

Los niveles de oxigenación muscular son los que determinan el mayor metabolismo anaeróbico, y con ello la producción de lactato, o los cambios en la FC. Por ello, siempre será preferible evaluar el primer eslabón de la cadena que las consecuencias del mismo. Además, otros puntos fuertes de las mediciones mediante NIRS son la naturaleza no invasiva, la habilidad para medir la evolución en músculos pequeños, la alta frecuencia de muestreo que permite y, recientemente, con la aparición de nuevos modelos portátiles y de poco tamaño, la posibilidad de utilizarlo en tests de campo o durante cualquier entrenamiento ya sea corriendo, pedaleando, nadando o haciendo trabajo de fuerza.

Para aquellos interesados en profundizar en el funcionamiento de los sistemas NIRS, la web líder en tecnología y deporte, ZitaSport, ha redactado un articulo explicando y detallando el dispositivo MOXY.

Este es el artículo: ENTENDIENDO LA SATURACIÓN MUSCULAR DE OXÍGENO. MOXY: Muscle Oxygen Monitor


REFERENCIAS

  1. Souza KM De, Grossl T, Lucas RD De, Costa VP, Guilherme L, Guglielmo A. Maximal lactate steady state estimated by different methods of anaerobic threshold. Brazilian Kournal kinantropometry Hum Perform. 2011;(November):264–75.
  2. Bellotti C, Calabria E, Capelli C, Pogliaghi S. Determination of maximal lactate steady state in healthy adults: Can NIRS help? Med Sci Sports Exerc. 2013;45(6):1208–16.
  3. Snyder AC, Parmenter MA. Using Near-Infrared Spectroscopy to determine maximal steady state exercise intensity. Strength Cond. 2009;23(6):1833–40.