Entradas

FUERZA O RESISTENCIA, ¿CUÁL PROTEGE MÁS FRENTE A LA MORTALIDAD?

La capacidad cardiorrespiratoria (CRF, por sus siglas en inglés), popularmente conocida como “resistencia”, ha mostrado ser un importante factor pronóstico de multitud de enfermedades como las cardiovasculares o algunos tipos de cáncer, estando inversamente relacionada con el riesgo de mortalidad. Es por ello que el ejercicio físico aeróbico o de resistencia ha sido tradicionalmente ensalzado como el tipo de actividad que mayores beneficios podría aportar a la salud. Sin embargo, en los últimos años otro indicador clave de la forma física, la fuerza muscular, está aumentando su popularidad en el ámbito de la salud al estar también inversamente asociada al riesgo de diversas patologías y de mortalidad.

En un reciente estudio (Kim, 2018) se analizó cuál de estos dos factores está más relacionado con el riesgo de mortalidad, o si la combinación de ambos componentes de la forma física podría aportar algún valor añadido. Los autores analizaron a más de setenta mil participantes de entre 40 y 70 años a los que se les midió tanto la fuerza de prensión manual con un dinamómetro como la CRF mediante una prueba de esfuerzo en bicicleta. Tras esto, se les realizó un seguimiento durante aproximadamente 6 años en los que murieron 832 participantes. Los resultados mostraron que, al analizar por separado la CRF y la fuerza muscular, ambos estaban relacionados de forma similar con el riesgo de mortalidad por cualquier causa, así como con la mortalidad específica por enfermedad cardiovascular o cáncer. Sin embargo, el principal hallazgo fue que la combinación de ambos factores, es decir, una alta fuerza muscular y una alta CRF, reducía enormemente el riesgo de mortalidad en comparación con altos niveles de cada factor por separado.

Así, estos resultados muestran que aunque tanto la CRF como la fuerza muscular son factores independientemente relacionados con el riesgo de mortalidad, ambas capacidades deben ser tomadas como marcadores complementarios y no suplementarios de la forma física. Además, los resultados refuerzan la importancia de mantener tanto una buena “capacidad aeróbica” como una buena fuerza muscular para maximizar los beneficios del ejercicio sobre la salud. ¿Fuerza o resistencia? Mejor los dos.


REFERENCIAS

  • Kim et al. (2018) The combination of cardiorespiratory fitness and muscle strength, and mortality risk. European Journal of Epidemiology. 33: 953-964.

DIETAS BAJAS EN CARBOHIDRATOS PARA EL RENDIMIENTO ¿QUÉ DICE LA EVIDENCIA?

Las dietas bajas en carbohidratos se presentan actualmente como una tendencia con un gran seguimiento entre los deportistas de resistencia. El rendimiento en estos deportes está altamente condicionado por la disponibilidad de glucógeno, el almacén de los carbohidratos en hígado y músculo. Las dietas bajas en carbohidratos parecen mejorar el metabolismo de las grasas, lo cual supondría un ahorro de glucógeno y por lo tanto la capacidad para evitar esa fatiga tan temida por los deportistas comúnmente denominada “pájara” o “muro”. Ante tal hipótesis, muchos deportistas se aventuran a reducir su ingesta de carbohidratos siguiendo dietas como la cetogénica (< 50 g al día de carbohidratos).

Un estudio muy reciente publicado en la prestigiosa revista Metabolism1 analizó el efecto de una dieta de 12 semanas alta en hidratos de carbono (65% de carbohidratos) o cetogénica (6% de carbohidratos) en deportistas de resistencia. Los investigadores encontraron una pérdida de peso y masa grasa considerablemente mayor con la dieta cetogénica que con la alta en carbohidratos. Además, aunque no se observaron diferencias en el rendimiento en una prueba de 100 km en bici, la dieta cetogénica aumentó la capacidad para consumir grasas durante este esfuerzo, y aportó ligeros beneficios en la potencia relativa durante un sprint.

Sin embargo, la evidencia respecto a los beneficios de las dietas bajas en carbohidratos para el rendimiento no es unánime. Así, el grupo de la doctora Loiuse Burke, una de las mayores especialistas en nutrición deportiva, encontró2 que las dietas bajas en carbohidratos durante 12 semanas de entrenamiento intenso aumentaban la oxidación de grasas durante el ejercicio, pero también observaron una peor eficiencia energética (mayor consumo de oxígeno para los mismos ritmos) y un peor rendimiento en una prueba de 10 km en comparación con aquellos que consumían una dieta alta en hidratos de carbono o quienes periodizaban su ingesta (alternando momentos de alto y bajo consumo de hidratos de carbono).

Por lo tanto, aunque las dietas bajas en carbohidratos pueden aportar interesantes beneficios a nivel fisiológico como una mayor capacidad de oxidación de grasas -algo primordial especialmente en deportes de muy larga duración-, también parecen comprometer la capacidad para realizar esfuerzos de alta intensidad y, por lo tanto, el rendimiento. Estrategias como la periodización de la ingesta de carbohidratos podrían suponer un equilibrio positivo. De hecho, realizar las sesiones de entrenamiento intenso con una alta disponibilidad de carbohidratos y las sesiones de volumen y menor intensidad restringiendo la ingesta de este macronutriente ha mostrado propiciar grandes beneficios en el rendimiento y la masa grasa, más aún que dietas altas o bajas en hidratos de carbono. 3,4


Referencias

  1. McSwiney, F. T. et al. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 81, 25–34 (2017).
  2. Burke, L. M. et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 595, 2785–2807 (2017).
  3. Marquet, L. A. et al. Enhanced endurance performance by periodization of carbohydrate intake: ‘Sleep Low’ strategy. Medicine and Science in Sports and Exercise 48, (2016).
  4. Marquet, L. A. et al. Periodization of Carbohydrate Intake: Short-Term Effect on Performance. Nutrients 8, 1–13 (2016).

DIETA ALTA vs BAJA EN CARBOHIDRATOS PARA EL RENDIMIENTO EN DEPORTES DE RESISTENCIA

El rendimiento en deportes de élite se nutre de nuevas investigaciones con el fin de mejorar las marcas de los deportistas. Recientes investigaciones han demostrado diferentes beneficios para el rendimiento de las dietas cetogénicas altas en grasas (LOW CARB-HIGH FAT), por lo que muchos atletas prueban estrategias nutricionales que incluyen protocolos con una baja disponibilidad en carbohidratos y ricas en grasa con el objetivo de mejorar su rendimiento.

Un estudio reciente liderado por la Dra. Burke [1] investigó la adaptación a una dieta baja en carbohidratos (LOW CARB) y alta en grasas (HIGH FAT) durante 3 semanas de entrenamiento intenso y sus efectos sobre el metabolismo y el rendimiento de atletas de élite de resistencia. Se realizaron 3 dietas isoenergéticas según el grupo de estudio:

  • High Carb (HCHO): alto aporte en carbohidratos (8,6 gr/kg/día hidratos de carbono, 2,1 proteína y 1,2 grasa) antes, durante y después del entrenamiento.
  • Low-High Carb (PCHO): idéntica ingesta de macronutrientes que la anterior pero alternando entre días disponibilidad alta y baja de CHO.
  • Low Carb – High Fat (LCHF): alta disponibilidad de grasa (< 50 g/día CHO; 2,1 g/kg/día de proteína; 78% de la ingesta energética en forma de grasa).

Tras la intervención, el VO2max incrementó en todos los grupos. El grupo LCHF aumentó la tasa de oxidación de grasas. Sin embargo, este grupo disminuyó la economía de carrera, ya que el VO2 aumentó a la velocidad empleada por los corredores para un 20K, mientras que los grupos de HCHO y PCHO redujeron el %VO2 empleado a esa velocidad de carrera.

Captura de pantalla 2017-07-17 a las 17.59.54

Figura 1. Consumo máximo de oxígeno en corredores de élite pre y post intervención de 3 semanas intensas de entrenamiento en los 3 grupos de estudio. Alto aporte de hidratos de carbono (HCHO), disponibilidad periodizada de carbohidratos (PCHO) y dieta baja en carbohidratos y alta en grasa (LCHF).

Además, los grupos HCHO y PCHO mejoraron el tiempo de 10K, reduciendo un 6,6% y un 5,3% su marca respectivamente, mientras que en el grupo High Fat se vio incluso un leve aumento de sus tiempos (-1,6%).

Captura de pantalla 2017-07-17 a las 17.58.50

Figura 2. Tiempo de carrera en 10K en corredores de élite pre y post intervención de 3 semanas intensas de entrenamiento en los 3 grupos de estudio.

Se concluye por lo tanto que el entrenamiento con una dieta alta en grasas y baja en carbohidratos, a pesar de mejorar el VO2max, no mejora el rendimiento en atletas de resistencia de élite, en parte debido a una reducción en la economía de carrera. Por ello, los deportistas de resistencia de élite deben optar por protocolos nutricionales en los que la presencia de carbohidratos sea un pilar fundamental en los periodos de entrenamiento intenso.


REFERENCIA

[1]      L. M. Burke, M. L. Ross, L. A. Garvican-Lewis, M. Welvaert, I. A. Heikura, S. G. Forbes, J. G. Mirtschin, L. E. Cato, N. Strobel, A. P. Sharma, and J. A. Hawley, “Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers,” J. Physiol., vol. 595, no. 9, pp. 2785–2807, May 2017.

¿MEJORA EL RENDIMIENTO EN CARRERA CON EL ENTRENAMIENTO DE LOS MÚSCULOS RESPIRATORIOS?

El rendimiento deportivo se ve afectado negativamente por las limitaciones en el sistema respiratorio, especialmente a altas intensidades, por el aumento en el trabajo de esta musculatura. Así, la fatiga de los músculos respiratorios, inspiratorios y espiratorios, no sólo disminuirá la capacidad de ventilar correctamente sino que también incrementará la actividad nerviosa simpática muscular de las extremidades produciendo una reducción del flujo sanguíneo hacia los músculos periféricos.

Sin embargo, existe cierta controversia sobre los beneficios del entrenamiento de los músculos respiratorios sobre el rendimiento ya que algunos estudios han registrado mejoras del 50% o más, mientras que otros no las han obtenido.

En este caso, se llevó a cabo un estudio (1) entre 20 ciclistas experimentados, los cuales fueron asignados a 3 grupos:

  • Grupo de ejercicio: realizó entrenamiento de los músculos respiratorios durante 4 semanas, 20 sesiones de 45’.
  • Grupo placebo: realizó entrenamiento simulado de los músculos respiratorios durante 4 semanas, 20 sesiones de 5’.
  • Grupo control: no hizo entrenamiento de la musculatura respiratoria.

Una vez finalizado el periodo de entrenamiento, se evaluó la función pulmonar y la fuerza de los músculos respiratorios a través de las presiones inspiratoria y espiratoria máximas mientras que, para valorar la resistencia, se analizó la máxima capacidad ventilatoria sostenible (SVC). Por último, se determinó el consumo máximo de oxígeno (VO2máx) mediante una prueba de esfuerzo en cicloergómetro.

Tras las 4 semanas de entrenamiento, el grupo de ejercicio incrementó la resistencia de los músculos respiratorios, representada por la SVC, en un 12% (Fig. 1). Sin embargo, la fuerza de esta musculatura no varió, demostrando que el protocolo seguido mejoró específicamente la resistencia de los músculos respiratorios.

fissac _ capacidad pulmonar pulmones rendimiento carrera

Figura 1. Análisis de la máxima capacidad ventilatoria sostenible antes del entrenamiento (Pre), después de dos semanas (Mid) y a las 4 semanas (Post) en los 3 grupos. RMET: grupo que realizó entrenamiento de músculos respiratorios; P: grupo que realizó entrenamiento simulado; C: grupo que no realizó este entrenamiento (1).

Además se mejoró el rendimiento para pruebas de contrarreloj de aproximadamente 40 minutos en un 4,7% (9 de los 10 sujetos del grupo de ejercicio mejoraron este parámetro), siendo esta mejora estadísticamente significativa con respecto a los valores obtenidos por los otros dos grupos.

De igual manera, tanto la ventilación pulmonar como el VO2máx fueron significativamente mayores después de las 4 semanas en el grupo de ejercicio mientras que se mantuvieron sin cambios en los grupos placebo y de control.

Por tanto, dada la evidencia existente sobre la mejora de la capacidad de resistencia de los músculos respiratorios con este tipo de ejercicio, y en base a los resultados obtenidos, parece quedar demostrada la importancia de la inclusión del entrenamiento de los músculos respiratorios en la planificación general del entrenamiento de los ciclistas y de los deportistas en general.


REFERENCIA

  1. Holm, P., Sattler, A., & Fregosi, R. F. (2004). Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiology, 4(1), 1.

EL EFECTO DEL ENTRENAMIENTO SOBRE LA LONGITUD DE LOS TELÓMEROS

Los cromosomas poseen en los extremos unas estructuras especiales requeridas para su estabilidad, sin las cuales las células se encontrarían en riesgo crítico. Estas estructuras situadas al final de los cromosomas son los telómeros, los cuales hacen de ‘tapones’ con la función de proteger a los cromosomas de daños (1).

Con la edad, los telómeros se van acortando con cada división celular hasta que pierden su funcionalidad y se acaba produciendo la senescencia o apoptosis celular (muerte de la célula). Por tanto, se muestran como un ‘reloj interno’ que determina la vida útil de la célula. Este acortamiento de los telómeros se debe al estrés oxidativo y se considera un marcador del estado de salud celular y el envejecimiento biológico.

En un estudio de Borghini y cols (2) se quiso determinar el efecto crónico y agudo del ejercicio de resistencia sobre la longitud de los telómeros (LT).

En primer lugar, para evaluar el efecto crónico, se comparó la LT entre 20 atletas de resistencia (edad = 45.4±9.2 años), con una distancia media de entrenamiento de 59.4 km/sem y una media de 13.15 años de experiencia en este tipo de carreras, con la LT de un grupo de 42 sujetos sedentarios (edad = 45.9±9.5 años). Se obtuvo que la LT fue preservada entre los atletas más veteranos en comparación con sus pares del grupo control, mientras que no hubo diferencias entre los jóvenes de ambos grupos.

fissac _ longitud telómeros y ejercicio

Figura 1. Efecto crónico del entrenamiento regular sobre la longitud de los telómeros (2)

Para evaluar el efecto agudo, se analizó la LT en el grupo de atletas tras una carrera de ultrafondo. En este caso, se observó que la LT se redujo tanto en el punto intermedio como al final de la carrera.

Estos datos sugieren que el entrenamiento regular puede tener un papel protector sobre el acortamiento de los telómeros enlenteciendo el envejecimiento biológico promoviendo un efecto ‘anti-aging’ (anti-envejecimiento), mientras que exposiciones agudas a carreras de fondo podrían implicar un acortamiento de los telómeros con el consiguiente daño celular, probablemente causado por el daño oxidativo sobre el ADN.


REFERENCIAS

1.- Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological reviews88(2), 557-579

2.- Borghini, A., Giardini, G., Tonacci, A., Mastorci, F., Mercuri, A., Sposta, S. M., … & Pratali, L. (In press). Chronic and acute effects of endurance training on telomere length. Mutagenesis.

ENTRENAMIENTO CON LOS NIVELES DE GLUCÓGENO BAJOS: EVITA EL “MURO”

Uno los factores limitantes del rendimiento en los deportes de larga duración es la capacidad de utilización de las grasas como fuente energética debido al carácter ilimitado de este sustrato en el organismo, evitando por tanto el temido “muro” o “pájara”. Hay una gran controversia en torno a estrategias que buscan favorecer este cambio metabólico, como por ejemplo el entrenamiento en ayunas o seguir dietas altas en grasa y bajas en carbohidratos.

En el estudio de Hulston y cols (1) se analizaron los diferentes efectos en el rendimiento y el metabolismo realizando entrenamiento HIIT con los depósitos de glucógeno llenos (HIGH) o con los depósitos de glucógeno sin reponer (LOW). Para ello, dividieron a 14 ciclistas entrenados en dos planes de entrenamiento durante tres semanas. El grupo HIGH alternaba un día de entrenamiento de resistencia (90 min al 70% VO2max) con un día de HIIT (8 x 5 minutos de máximo esfuerzo con un minuto de recuperación), dejando por lo tanto 24 horas de recuperación en las cuales se recuperaban los depósitos de glucógeno. Por otro lado, el grupo LOW realizaba el entrenamiento de HIIT una hora después del entrenamiento de resistencia, no dejando por tanto tiempo suficiente para la reposición de este sustrato.

Tras las tres semanas de entrenamiento, ambos grupos mejoraron de similar forma la potencia media ejercida en una contrarreloj de 60 minutos. Sin embargo, es importante remarcar que estos beneficios fueron iguales pese a que los sujetos del grupo LOW fueron capaces de ejercer menos potencia durante las sesiones de entrenamiento. Otro punto a resaltar de este estudio fue el aumento del uso de las grasas como sustrato energético en detrimento de la glucosa en el grupo LOW en comparación con el HIGH.

fissac _ niveles glucógeno fissac _ glucógeno resistencia

Figura 1. Ambos grupos (HIGH y LOW) mejoraron de igual forma el rendimiento en una contrarreloj (A) pese a que el grupo LOW tenía peor rendimiento en las sesiones de entrenamiento (B)

Por lo tanto, los resultados obtenidos invitan a apoyar el uso de estrategias que supongan entrenar con los depósitos de glucógeno bajos para mejorar la capacidad de utilización de grasas como sustrato energético en deportes de larga duración. Sin embargo, la disminución del metabolismo de carbohidratos con estas estrategias hace que puedan no ser adecuadas para deportes que requieran esfuerzos de alta intensidad. Además, pese a que pueda ser una opción muy válida llevar a cabo este tipo de práctica durante algunos momentos de la temporada (especialmente cuando se quiere aumentar la resistencia aeróbica de base), al acercarnos a periodos competitivos sería conveniente realizar una correcta carga de glucógeno.


REFERENCIAS

  1. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42(11):2046–55.

EVOLUCIÓN DEL PERFIL FISIOLÓGICO DE LANCE ARMSTRONG: 1992 – 1999

  • En 1993, con 22 años, fue el campeón del mundo de ruta más joven de la historia.
  • En Octubre de 1996 se le detectó un cáncer de testículos por el que tuvo que ser operado y recibir quimioterapia.
  • En 1998 volvió a la competición quedando 4º en el Campeonato del Mundo.
  • De 1999 a 2005 hizo historia proclamándose 7 veces campeón del Tour de Francia.

Dejando de lado sus escándalos con el dopaje, Armstrong es un super hombre. Su maduración fisiológica desde los 21 hasta los 28 años así lo corroboran. Durante estos 7 años se recogieron los datos que conformaron el mapa fisiológico con el que pudo asaltar el trono del ciclismo mundial.

Su consumo de oxígeno máximo se mantuvo estable en unos 6 L/min, alcanzando a los 22 años un consumo máximo relativo de 81,2 ml/km/min. Su umbral de lactato se situó en torno al 76-85% de su VO2max, siendo su concentración de lactato máxima tras una prueba de esfuerzo máxima de 6,5-7,5 mM, un valor muy bajo en relación a sus compañeros de equipo (9-14 mM). Su frecuencia cardiaca máxima disminuyó desde las 207 pulsaciones por minuto a las 200.

Durante estos 7 años mejoró su eficiencia muscular en un 8%. Este dato no lo podemos pasar por alto, ya que Lance conseguía a la misma cadencia de pedaleo producir un 8% más de potencia. Esta mejora se pudo ver también en los vatios (W) que movía a 5L/min de VO2. De una potencia en 1992 de 4,74 W/kg pasó en 1999 a 5,6 W/kg, un aumento de un 18%.

Tabla 1. Perfil fisiológico de Lance Armstrong de los 21 a los 28 años.

Fissac _ perfil fisiológico Lance Armstrong

Pero hay un dato que llama mucho la atención, el peso. En el libro Ganar a cualquier precio, Tyler Hamilton cuenta como el doctor Michele Ferrari, gurú del entrenamiento de resistencia (y de la EPO), estaba obsesionado con el peso.

Me explicó que el mejor cálculo de la capacidad estaba en los vatios por kilogramo: la cantidad de energía que produces dividida por tu peso. Decía que la cifra mágica era 6,7 vatios por kilogramo, porque eso era lo que hacía falta para ganar el Tour.

Michele estaba obsesionado con el peso, totalmente obsesionado. Hablaba sobre los kilos más que sobre el voltaje y sobre el hematocrito, que podía elevarse fácilmente con un poco de Edgar. El motivo: perder peso era la forma más difícil pero más eficaz de aumentar los cruciales vatios por kilogramo y, por lo tanto, de tener éxito en el Tour.

El peso, fundamental en los deportes de resistencia. Lance en estos 7 años osciló entre los 76-80 kg, sin embargo, en los años en los que era el Rey del Tour, su peso pasó a ser en competición de 72-74 kg. Con ello mejoró su potencia relativa, eficiencia muscular y potencia aeróbica

Su evolución habla de un deportista extraordinario en todos los sentidos. Trabajador, luchador y competitivo. Los juicios de moral no nos corresponden a nosotros. Lance fue un fenómeno fisiológico que se hizo a si mismo.


REFERENCIAS

Coyle, E.F., 2005. Improved muscular efficiency displayed as Tour de France champion matures. Journal of applied physiology (Bethesda, Md. : 1985), 98(March 2005), pp.2191–2196.

Hamilton, T. & Coyle, D., 2013. The Secret Race: Inside the Hidden World of the Tour de France-Doping, Cover-Ups, and Winning at All Costs, London: Random House.

 

 

DISTRIBUCIÓN DE CARGAS EN DEPORTES DE RESISTENCIA. ¿QUÉ HACE LA ÉLITE?

En los últimos años la forma de entrenar de los deportistas de resistencia de larga duración ha evolucionado mucho, y parte de esta evolución se debe a los cambios en la distribución de las cargas de entrenamiento. Actualmente existen dos modelos de distribución principales, el modelo “al umbral” y el modelo “polarizado”.

La distribución de cargas puede ser determinada por el porcentaje de tiempo que los sujetos entrenan en las diferentes zonas de intensidad, que pueden dividirse en:

  • Zona 1: Por debajo del ILT (Umbral individual de lactato). Intensidad suave, <65% de la potencia máxima, por debajo del umbral aeróbico.
  • Zona 2: Entre el ILT y el OBLA (onset of blood lactate accumulation). Intensidad media, 65-80% de la potencia máxima.
  • Zona 3: Intensidad alta, >80% de la potencia máxima, por encima del OBLA.

El modelo “al umbral” es el más tradicional, y consiste en tener como foco de atención la Zona 2 o entre umbrales. Sigue siendo muy común ver a deportistas de resistencia entrenando durante prácticamente toda la temporada y en casi todas las sesiones a ritmo de competición, lo que en deportes de resistencia supone un ritmo entre el umbral aeróbico y anaeróbico (Sí, hasta en competiciones de 12 horas como un Ironman se compite la mayor parte del tiempo en zona 2, como hallaron Muñoz et al, 2014). Sin embargo, actualmente esta metodología está desapareciendo para dejar paso al entrenamiento polarizado.

El entrenamiento polarizado consiste en dar prioridad al entrenamiento de muy baja intensidad o Zona 1, entrenando hasta un 75-80% del tiempo total en esta zona, y al entrenamiento de alta intensidad o Zona 3, dedicándole un 15-20% aproximadamente. Este modelo disminuye drásticamente el tiempo empleado en Zona 2 o entre umbrales, lo que significa que disminuyen los entrenamientos con ritmos de competición o cercanos al mismo.

Muñoz et al (2014) analizaron la distribución de cargas en la preparación de varios sujetos en su camino al Ironman y encontraron que, pese a que la mayor parte del tiempo en la competición se mantuviese la intensidad entre umbrales, el tiempo invertido durante el entrenamiento en zona 2 está negativamente correlacionado con el rendimiento en la competición. Sin embargo, el tiempo invertido en Zona 1, por debajo del umbral aeróbico y por debajo del ritmo de competición, está muy positivamente correlacionado con el rendimiento.

Neal et al. (2013) compararon las mejoras fisiológicas y de rendimiento de dos grupos de ciclistas entrenados con el modelo tradicional “al umbral” o con un modelo polarizado extremo, es decir, con un 0% del tiempo invertido en zona 2. Los sujetos entrenados mediante el modelo polarizado obtuvieron mejores resultados que los que siguieron el modelo tradicional en un time-trial de 40 km, además de aumentar en mayor proporción su potencia para los dos umbrales y obtener una mayor mejora en la potencia pico.

Fissac - Triatlón

Imagen 1. Inicio de una prueba de triatlón.

Sin embargo, el entrenamiento no debe estar basado sólo en la ciencia sino también en la experiencia. Una de las personas que mejor consigue aunar el arte de entrenar con la fisiología del ejercicio es Íñigo Mujika. El Dr. Mujika, además de ser un referente científico a nivel internacional, es el preparador de Anihoa Murua, triatleta wordclass. Saber cómo entrenan los deportistas de élite es una pregunta que siempre se hace la gente de a pie. En un artículo publicado en 2014, Mújika detalla la preparación que siguió Ainhoa el año previo a los JJOO de Londres 2012 (Mujika 2014).

Tras 50 semanas de entrenamiento, Ainhoa Murua hizo 786 sesiones (303 de natación, 194 de bici, 254 de running y 45 sesiones de fuerza). Semanalmente hizo una media de 16 sesiones, de las cuales 6 ± 1 fueron de natación, 4 ± 1 de bici, 5 ± 2 de running y 1 ± 1 de fuerza. Del total de 50 semanas, 21 días fueron de descanso total. Los volúmenes fueron de entrenamiento fueron los siguientes:

  • 1230 km de natación.
  • 427 h de bicicleta.
  • 250 h corriendo.

La intensidad de entrenamiento (de las 3 disciplinas) se dividió en las 3 zonas, calculadas cada una de ellas para cada modalidad. Para natación se distribuyó de la siguiente manera, 74% (Zona 1), 16% (Zona 2), 10% (Zona 3); para bicicleta 88% (Zona 1), 10% (Zona 2), 2.1 % (Zona 3); y para las sesiones de running 85% (Zona 1), 8.0% (Zona 2), 6.7% (Zona 3).

Fissac - Distribución de la intensidad de entrenamiento de trialón

Figura 1. Distribución de la intensidad de entrenamiento a lo largo de 50 semanas de entrenamiento. Las barras negras representan intensidades de entrenamiento por debajo del LT; las barras blancas intensidades entre el LT y el OBLA; las barras negras intensidades por encima del OBLA. Obtenido de Mújika 2014.

Fissac - Distribución de la carga de entrenamiento de trialtón

Figura 2. Carga total de entrenamiento, expresada en unidades arbitrarias de 50 semanas de entrenamiento. Los recuadros colocados en el eje horizontal representan las competiciones, y los números la posición en la que Ainhora Murua quedó. Los recuadros blancos representan competiciones baja prioridad que no contribuyen al ranking mundial. Los recuadros grises representan competiciones de alta prioridad que contribuyen al ranking mundial. El recuadro negro representan los JJOO de Londres. Obtenido de Mújika 2014.

Como vemos, tanto la ciencia más reciente como la práctica de entrenadores a nivel élite con excelentes resultados nos muestran los beneficios del entrenamiento polarizado, realizando la mayor parte del volumen de entrenamiento a intensidades muy bajas y enfatizando en el entrenamiento a alta intensidad. El entrenamiento en Zona 2, submáximo, o de ritmo de competición podría ser útil para que los sujetos interioricen el ritmo de prueba, a la hora de hacer simulaciones de la competición, o al final del macrociclo antes de la puesta a punto cuando los entrenamientos se deben hacer más específicos.

REFERENCIAS

Mujika, I., 2014. Olympic preparation of a world-class female triathlete. International journal of sports physiology and performance, 9(4), pp.727–31.

Muñoz, I. et al., 2014. Training-Intensity Distribution During an Ironman Season : Relationship With Competition Performance. International journal of sports physiology and performance, 9, pp.332–339.

Neal, C.M. et al., 2013. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of applied physiology (Bethesda, Md. : 1985), 114, pp.461–71.